
The Essence of Dependent Object Types

Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, Sandro Stucki

A Long Time Ago in A Galaxy Far Far Away…

A Long Time Ago in A Galaxy Far Far Away…

Contents

What was proposed then:

▶ Languages should have both virtual (abstract) types and type
parameters.

What is shown here:

▶ Virtual types are a great basis for both (and for modules as well).
▶ Virtual types have a beautiful type theoretic foundation.

Our Aim

We are looking for a minimal∗ theory that can model

1. type parameterization,
2. modules,
3. objects and classes.

Our Aim

We are looking for a minimal∗ theory that can model

1. type parameterization,
2. modules,
3. objects and classes.

∗ minimal: We do not deal with inheritance; that’s deferred to encodings.

Our Aim

We are looking for a minimal theory that can model

1. type parameterization,
2. modules,
3. objects and classes.

There were several attempts before, including
νObj which was proposed as a basis for Scala (ECOOP 2003).

But none of them felt completely canonical or minimal.
Related: 1ML, which can model (1) and (2) by mapping to System F.

Not Everybody Agrees with the Aim

Dependent Types

We will model modules as objects with type members.
This requires a notion of dependent type - the type referred to by a type
member depends on the owning value.
In Scala we restrict dependencies to paths.
In the calculus presented here we restrict it further to variables.

Example

We can define heterogeneous maps like this:

trait Key { type Value }

trait HMap {

def get(key: Key): Option[key.Value]

def add(key: Key)(value: key.Value): HMap

}

Example

We can define heterogeneous maps like this:

trait Key { type Value }

trait HMap {

def get(key: Key): Option[key.Value]

def add(key: Key)(value: key.Value): HMap

}

type Value is a abstract type declaration
key.Value is a path-dependent type.

Example

trait Key { type Value }

trait HMap {

def get(key: Key): Option[key.Value]

def add(key: Key)(value: key.Value): HMap

}

val sort = new Key { type Value = String }

val width = new Key { type Value = Int }

val params = HMap.empty

.add(width)(120)

.add(sort)(”time”)

Example

trait Key { type Value }

trait HMap {

def get(key: Key): Option[key.Value]

def add(key: Key)(value: key.Value): HMap

}

val sort = new Key { type Value = String }

val width = new Key { type Value = Int }

val params = HMap.empty

.add(width)(120)

.add(sort)(”time”)

.add(width)(true) // type error

Virtual Types can model Type Parameters

Example: Simple Lists in Scala, using type parameters.

trait List[T] {

def isEmpty: Boolean

def head: T

def tail: List[T]

}

def Nil[T] = def Cons[T](hd: T, tl: List[T]) =

new List[T] { new List[T] {

def isEmpty = true def isEmpty = false

def head = ??? def head = hd

def tail = ??? def tail = tl

} }

Encoding using Virtual Types

trait List { self =>

type T

def isEmpty: Boolean

def head: T

def tail: List { type T = self.T }

}

def Nil[X] = def Cons[X](hd: X, tl: List { type T = X }) =

new List { self => new List { self =>

type T = X type T = X

def isEmpty = true def isEmpty = false

def head = self.head def head = hd

def tail = self.tail def tail = tl

} }

Covariant Lists

In actual fact, Scala lists are co-variant:

trait List[+T] {

def isEmpty: Boolean

def head: T

def tail: List[T]

}

val Nil = def Cons[T](hd: T, tl: List[T]) =

new List[Nothing] { new List[T] {

def isEmpty = true def isEmpty = false

def head = ??? def head = hd

def tail = ??? def tail = tl

} }

Encoding Covariance

trait List { self =>

type T

def isEmpty: Boolean

def head: T

def tail: List { type T <: self.T }

}

val Nil = def Cons[X](hd: X, tl: List { type T <: X }) =

new List { self => new List { self =>

type T = Nothing type T <: X

def isEmpty = true def isEmpty = false

def head = self.head def head = hd

def tail = self.tail def tail = tl

} }

Encoding Polymorphic Functions

Polymorphic functions can be modeled as dependent functions.

trait TypeParam { type TYPE }

def Cons(T: TypeParam)(hd: T.TYPE, tl: List { type T <: T.TYPE }) =

new List { self =>

type T < T.TYPE

def isEmpty = false

def head = hd

def tail = tl

}

Towards a Model

What is a maximally simple way to model all this in a calculus?
We need some way to write (dependent) functions:

λ(x : T)t : ∀(x : T)U

and some way to write objects:

ν(x : T)d : µ(x : T)

Towards a Model

What is a maximally simple way to model all this in a calculus?
We need some way to write (dependent) functions:

λ(x : T)t : ∀(x : T)U

and some way to write objects:

ν(x : T)d : µ(x : T)

Note that all quantifiers range over term variables x.

Objects

An object ν(x : T)d is composed of a self reference x : T and a body d.
The body is composed of method definitions:

{a = t} : {a : T}

and of type definitions:

{A = T} : {A : T1..T2}

using aggregation and type intersection:

d1 ∧ d2 : T1 ∧ T2

Objects are decomposed using selection: x.a x.A

Object Types

▶ The type of an object is a record that can contain self-references.
▶ Self-references are bound by the recursive type wrapper ν
▶ For instance, the type of the List trait can be modelled like this:

List <: µ(self:
{ T: ⊥..⊤ } ∧
{ isEmpty: Boolean } ∧
{ head: self.T } ∧
{ self: List∧ { T: ⊥..self.T }})

Subtyping

Types are related through subtyping

T1 <: T2

Subtyping is essential, because it gives us a way to relate a
path-dependent type x.A to its alias or bounds.

DOT Syntax

Note: Terms are in ANF form.

This is not a fundamental restriction; it turns out ANF fits well with path-dependent types.

Evaluation

Adopting the techniques of A Call-By-Need Lambda Calculus, we define
small-step reduction relation using evaluation contexts e:

Type Assignment

Type Assignment

Type Assignment

Type Assignment

Type Assignment

Definition Type Assignment

Subtyping

Subtyping

Meta-Theory

Simple as it is, the soundness proof of DOT was surprisingly hard.

▶ Attempts were made since about 2008.
▶ Previous publications (FOOL 12, OOPSLA 14) report about (some)

advances and (lots of) difficulties.
▶ Essential challenge: Subtyping theories are programmer-definable.

Programmer-Definable Theories

In Scala and DOT, the subtyping relation is given in part by user-definable
definitions:

type T >: S <: U { T: S .. U }

This makes T a supertype of S and a subtype of U.
By transitivity, S <: U.
So the type definition above proves a subtype relationship which was
potentially not provable before.

Bad Bounds

What if the bounds are non-sensical?
Example

type T >: Any <: Nothing

By the same argument as before, this implies that

Any <: Nothing

Once we have that, again by transitivity we get S <: T for arbitrary S and
T.
That is, the subtyping relations collapses to a single point.

Bad Bounds and Inversion

A collapsed subtyping relation means that inversion fails.
Example: Say we have a binding x = ν(x :T)....
So in the corresponding environment Γ we would expect a binding
x : µ(x :T).
But if every type is a subtype of every other type, we also get with
subsumption that Γ ⊢ x : ∀(x : S)U !
Hence, we cannot draw any conclusions from the type of x. Even if it is a
function type, the actual value may still be a record.

Can We Exclude Bad Bounds Statically?

Unfortunately, no.
Consider:

type S = { type A; type B >: A <: Bot }

type T = { type A >: Top <: B; type B }

Individually, both types have good bounds. But their intersection does not:

type S & T == { type A >: Top <: Bot; type B >: Top <: Bot }

So, bad bounds can arise from intersecting types with good bounds.
It turns out that even checking all intersections of a program statically
would not exclude bad bounds.

Dealing With It

Observation: To prove preservation, we need to reason at the top-level
only about environments that arise from an actual computation. I.e. in

If Γ ⊢ t : T and t −→ u then Γ ⊢ u : T.
the environment Γ corresponds to an evaluated let prefix, which binds
variables to values.
And values have guaranteed good bounds because all type members are
aliases.

Γ ⊢ {A = T} : {A : T..T}

The paper provides an elaborate argument how to make use of this
observation for the full soundness proofs.

Variants

▶ First soundness proof by Tiark and Nada used big-step semantics for
a variant of DOT.

▶ That variant is more powerful (and its meta-theory more
complicated) because it deals with subtyping recursive types.

▶ The paper presents an independently developed proof that uses a
small-step semantics.

▶ We took heed of Phil’s advice of the importance of being stupid.

Conclusion

