



# The Essence of Dependent Object Types

Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, Sandro Stucki

## A Long Time Ago in A Galaxy Far Far Away...

#### A Long Time Ago in A Galaxy Far Far Away...

#### A Statically Safe Alternative to Virtual Types

Kim B. Bruce<sup>\*1</sup>, Martin Odersky<sup>2</sup>, and Philip Wadler<sup>3</sup>

<sup>1</sup> Williams College, Williamstown, MA, USA, kim@cs.williams.edu, http://www.cs.williams.edu/~kim/ <sup>2</sup> University of South Australia, odersky@cis.unisa.edu.au, http://www.cis.unisa.edu.au/~cismxo/ <sup>3</sup> Bell Labs, Lucent Technologies, wadler@research.bell-labs.com, http://www.cs.bell-labs.com/~wadler/

**Abstract.** Parametric types and virtual types have recently been proposed as extensions to Java to support genericity. In this paper we investigate the strengths and weaknesses of each. We suggest a variant of virtual types which has similar expressiveness, but supports safe static

#### Contents

What was proposed then:

 Languages should have both virtual (abstract) types and type parameters.

What is shown here:

- Virtual types are a great basis for both (and for modules as well).
- ► Virtual types have a beautiful type theoretic foundation.

## Our Aim

We are looking for a *minimal*\* theory that can model

- 1. type parameterization,
- 2. modules,
- 3. objects and classes.

## Our Aim

We are looking for a *minimal*\* theory that can model

- 1. type parameterization,
- 2. modules,
- 3. objects and classes.

\* *minimal*: We do not deal with inheritance; that's deferred to encodings.

## Our Aim

We are looking for a *minimal* theory that can model

- 1. type parameterization,
- 2. modules,
- 3. objects and classes.

There were several attempts before, including

 $\nu Obj$  which was proposed as a basis for Scala (ECOOP 2003). But none of them felt completely canonical or minimal. Related: 1ML, which can model (1) and (2) by mapping to System F.

### Not Everybody Agrees with the Aim



How many FP people see OOP

How many OOP people see FP

## Dependent Types

We will model *modules* as *objects with type members*.

This requires a notion of dependent type - the type referred to by a type member depends on the owning value.

In Scala we restrict dependencies to *paths*.

In the calculus presented here we restrict it further to variables.

We can define *heterogeneous maps* like this:

```
trait Key { type Value }
trait HMap {
  def get(key: Key): Option[key.Value]
  def add(key: Key)(value: key.Value): HMap
}
```

We can define *heterogeneous maps* like this:

```
trait Key { type Value }
trait HMap {
  def get(key: Key): Option[key.Value]
  def add(key: Key)(value: key.Value): HMap
}
```

| type Value | is a | abstract type declaration |
|------------|------|---------------------------|
| key.Value  | is a | path-dependent type.      |

```
trait Key { type Value }
trait HMap {
  def get(key: Key): Option[key.Value]
  def add(key: Key)(value: key.Value): HMap
}
val sort = new Key { type Value = String }
val width = new Key { type Value = Int }
val params = HMap.empty
  .add(width)(120)
  .add(sort)("time")
```

```
trait Key { type Value }
trait HMap {
  def get(key: Key): Option[key.Value]
  def add(key: Key)(value: key.Value): HMap
}
val sort = new Key { type Value = String }
val width = new Key { type Value = Int }
val params = HMap.empty
  .add(width)(120)
  .add(sort)("time")
  .add(width)(true) // type error
```

## Virtual Types can model Type Parameters

**Example:** Simple Lists in Scala, using type parameters.

```
trait List[T] {
  def isEmpty: Boolean
  def head: T
  def tail: List[T]
}
```

```
def Nil[T] =
  new List[T] {
    def isEmpty = true
    def head = ???
    def tail = ???
}
```

```
def Cons[T](hd: T, tl: List[T]) =
  new List[T] {
    def isEmpty = false
    def head = hd
    def tail = tl
  }
```

Encoding using Virtual Types

```
trait List { self =>
 type T
 def isEmpty: Boolean
 def head: T
 def tail: List { type T = self.T }
}
def Nil[X] =
                           def Cons[X](hd: X, tl: List { type T = X }) =
 new List { self =>
                            new List { self =>
   type T = X
                              type T = X
   def isEmpty = true
                           def isEmpty = false
   def head = self.head
                        def head = hd
   def tail = self.tail
                        def tail = tl
}
                             }
```

#### Covariant Lists

In actual fact, Scala lists are co-variant:

```
trait List[+T] {
  def isEmpty: Boolean
  def head: T
  def tail: List[T]
}
```

```
val Nil =
  new List[Nothing] {
    def isEmpty = true
    def head = ???
    def tail = ???
}
```

```
def Cons[T](hd: T, tl: List[T]) =
  new List[T] {
    def isEmpty = false
    def head = hd
    def tail = tl
  }
```

### **Encoding Covariance**

```
trait List { self =>
  type T
  def isEmpty: Boolean
  def head: T
  def tail: List { type T <: self.T }
}</pre>
```

```
val Nil =
  new List { self =>
    type T = Nothing
    def isEmpty = true
    def head = self.head
    def tail = self.tail
}
```

```
def Cons[X](hd: X, tl: List { type T <: X }) =
    new List { self =>
      type T <: X
      def isEmpty = false
      def head = hd
      def tail = tl
    }</pre>
```

### **Encoding Polymorphic Functions**

Polymorphic functions can be modeled as dependent functions.

```
trait TypeParam { type TYPE }
def Cons(T: TypeParam)(hd: T.TYPE, tl: List { type T <: T.TYPE }) =
    new List { self =>
      type T < T.TYPE
      def isEmpty = false
      def head = hd
      def tail = tl
    }</pre>
```

#### Towards a Model

What is a maximally simple way to model all this in a calculus? We need some way to write (dependent) *functions*:

$$\lambda(x:T)t$$
 :  $\forall(x:T)U$ 

and some way to write *objects*:

$$u(\mathbf{x}: T)\mathbf{d} : \mu(\mathbf{x}: T)$$

#### Towards a Model

What is a maximally simple way to model all this in a calculus? We need some way to write (dependent) *functions*:

$$\lambda(x:T)t$$
 :  $\forall(x:T)U$ 

and some way to write *objects*:

$$\nu(\mathbf{x}: T)\mathbf{d}$$
 :  $\mu(\mathbf{x}: T)$ 

Note that all quantifiers range over term variables x.

#### Objects

An object  $\nu(x:T)d$  is composed of a *self reference* x:T and a body d. The body is composed of *method definitions*:

$$\{a=t\} \quad : \quad \{a:T\}$$

and of *type definitions*:

$$\{A = T\}$$
 :  $\{A : T_1 ... T_2\}$ 

using *aggregation* and *type intersection*:

$$d_1 \wedge d_2$$
 :  $T_1 \wedge T_2$ 

Objects are decomposed using *selection*: *x.a x.A* 

## **Object Types**

- ▶ The type of an object is a record that can contain self-references.
- $\blacktriangleright$  Self-references are bound by the recursive type wrapper  $\nu$
- ► For instance, the type of the List trait can be modelled like this:

```
List <: \mu(self:

{ T: \bot..\top } \land

{ isEmpty: Boolean } \land

{ head: self.T } \land

{ self: List \land { T: \bot..self.T }} )
```

## Subtyping

Types are related through subtyping

$$T_1 \quad <: \quad T_2$$

Subtyping is essential, because it gives us a way to relate a path-dependent type x.A to its alias or bounds.

## DOT Syntax

| x, y, z                                                                                                 | Variable                                                                                                                                                   | v ::=                                                                              | Value                                                                                                        |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| a, b, c 7                                                                                               | Term member                                                                                                                                                | $ u(x\!:\!T)d$                                                                     | object                                                                                                       |
| A, B, C                                                                                                 | Гуре member                                                                                                                                                | $\lambda(x:T)t$                                                                    | lambda                                                                                                       |
| S, T, U ::= T<br>{ $a: T$ }<br>{ $A: ST$ }<br>$\mu(x:T)$<br>orall (x:S)T<br>x.A<br>$S \wedge T$<br>op L | <b>Cype</b><br>field declaration<br>type declaration<br>recursive type<br>dependent function<br>type projection<br>intersection<br>top type<br>bottom type | $s, t, u ::=$ $x$ $v$ $x.a$ $x y$ $let x = t in u$ $d ::=$ $\{a = t\}$ $\{A = T\}$ | Term<br>variable<br>value<br>selection<br>application<br>let<br><b>Definition</b><br>field def.<br>type def. |

Note: Terms are in ANF form.

This is not a fundamental restriction; it turns out ANF fits well with path-dependent types.

#### Evaluation

Adopting the techniques of *A Call-By-Need Lambda Calculus*, we define small-step reduction relation using *evaluation contexts e*:

$$\begin{array}{cccc} e[t] & \longrightarrow e[t'] & \text{if } t & \longrightarrow t' \\ \text{let } x = v \text{ in } e[x \ y] & \longrightarrow \text{let } x = v \text{ in } e[[z := y]t] \text{ if } v = \lambda(z : T)t \\ \text{let } x = v \text{ in } e[x.a] & \longrightarrow \text{let } x = v \text{ in } e[t] & \text{if } v = \nu(x : T) \dots \{a = t\} \dots \\ \text{let } x = y \text{ in } t & \longrightarrow [x := y]t \\ \text{let } x = \text{let } y = s \text{ in } t \text{ in } u & \longrightarrow \text{let } y = s \text{ in let } x = t \text{ in } u \end{array}$$

where 
$$e ::= [] |$$
let  $x = []$  in  $t |$ let  $x = v$  in  $e$ 

 $\Gamma \vdash$ 

| $x:T\in \varGamma$                                                                            | $x\notin \mathrm{fv}(U)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\overline{\Gamma \ \vdash \ x:T}$                                                            | $rac{arGamma arFinal arGamma arGa$                                                                                          |
|                                                                                               | $\varGamma \vdash \mathbf{let}   x = t   \mathbf{in}   u: U$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\frac{\varGamma,\ x:T\vdash t:U}{\varGamma\vdash\lambda(x{:}T)t:\forall(x{:}T)U}$            | $\frac{\varGamma \vdash x:T}{\varGamma \vdash x:\mu(x:T)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $rac{1}{\Gamma \vdash x: orall (z:S)T \qquad \Gamma \vdash y:S}{\Gamma \vdash xy: [z:=y]T}$ | $\frac{\varGamma  \vdash  x: \mu(x{:}T)}{\varGamma  \vdash  x:T}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $rac{arGamma, \ x:T dash d:T}{arGamma dash  u(x:T)d: \mu(x:T)}$                              | $rac{arGamma arFinal : T \ arGamma arGamma : T \ arGamma arGamma : T \ arGamma : T \ arGamma : T \ arGamma : T \ arGamma : U \ arGamma : T \ arGamma : U \ a$ |
| $\frac{\varGamma \vdash x: \{a:T\}}{\varGamma \vdash x.a:T}$                                  | $\frac{\varGamma \vdash t:T  \varGamma \vdash T <: U}{\varGamma \vdash t:U}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

$$\begin{array}{c} \frac{x:T\in \Gamma}{\Gamma\vdash x:T} & x\notin fv(U) \\ \frac{x\notin fv(U)}{\Gamma\vdash x:T} & \frac{\Gamma\vdash t:T \quad \Gamma, x:T\vdash u:U}{\Gamma\vdash u:U} \\ \frac{\Gamma, x:T\vdash t:U}{\Gamma\vdash \lambda(x:T)t:\forall(x:T)U} \quad (\forall -\mathbf{I}) & \frac{\Gamma\vdash x:T}{\Gamma\vdash x:\mu(x:T)} \\ \frac{\Gamma\vdash x:\forall(z:S)T \quad \Gamma\vdash y:S}{\Gamma\vdash x:y:[z:=y]T} \quad (\forall -\mathbf{E}) & \frac{\Gamma\vdash x:\mu(x:T)}{\Gamma\vdash x:T} \\ \frac{\Gamma, x:T\vdash d:T}{\Gamma\vdash \nu(x:T)d:\mu(x:T)} & \frac{\Gamma\vdash x:T \quad \Gamma\vdash x:U}{\Gamma\vdash x:T \wedge U} \\ \frac{\Gamma\vdash x:\{a:T\}}{\Gamma\vdash x.a:T} & \frac{\Gamma\vdash t:T \quad \Gamma\vdash T <:U}{\Gamma\vdash t:U} \end{array}$$

$$\begin{array}{c} \frac{x:T \in \Gamma}{\Gamma \vdash x:T} & x \notin fv(U) \\ \frac{x:T \vdash r}{\Gamma \vdash x:T} & \frac{\Gamma \vdash t:T \quad \Gamma, x:T \vdash u:U}{\Gamma \vdash t:T \quad \Gamma, x:T \vdash u:U} \\ \frac{\Gamma, x:T \vdash t:U}{\Gamma \vdash \lambda(x:T)t:\forall(x:T)U} & \frac{\Gamma \vdash x:T}{\Gamma \vdash x:\mu(x:T)} \\ \frac{\Gamma \vdash x:\forall(z:S)T \quad \Gamma \vdash y:S}{\Gamma \vdash xy:[z:=y]T} & \frac{\Gamma \vdash x:\mu(x:T)}{\Gamma \vdash x:T} \\ \frac{\Gamma, x:T \vdash d:T}{\Gamma \vdash \nu(x:T)d:\mu(x:T)} \text{ (New)} & \frac{\Gamma \vdash x:T \quad \Gamma \vdash x:U}{\Gamma \vdash x:T \land U} \\ \frac{\Gamma \vdash x:\{a:T\}}{\Gamma \vdash x.a:T} & \text{ (SEL)} & \frac{\Gamma \vdash t:T \quad \Gamma \vdash T <:U}{\Gamma \vdash t:U} \end{array}$$

 $\Gamma \vdash$ 

| $x:T\in \varGamma$                                                                                         | $x \notin \mathrm{fv}(U)$                                                                                        |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| $\overline{\varGamma \ \vdash \ x:T}$                                                                      | $egin{array}{cccc} \Gamma dash t:T & \Gamma, \ x:T dash u:U \end{array}$                                         |
|                                                                                                            | $\varGamma \vdash \mathbf{let}   x = t   \mathbf{in}   u: U$                                                     |
| $rac{\Gamma,\;x:Tdash\;t:U}{\Gammadash\;\lambda(x\!:\!T)t:orall(x\!:\!T)U}$                              | $rac{arGamma \ arFinal \ x:T}{arGamma \ arFinal \ x:\mu(x:T)}  (	ext{Rec-I})$                                   |
| $rac{1}{\Gamma} - rac{1}{x} : orall (z;S)T \qquad \Gamma dash y:S \ rac{1}{\Gamma} dash x  y: [z:=y]T$ | $rac{arGamma \ arphi \ x: \mu(x:T)}{arGamma \ argin \ x:T}  (	extbf{Rec-E})$                                    |
| $rac{arGamma,\ x:Tdash d:T}{arGammaarphiarphi(x:T)d:\mu(x:T)}$                                            | $rac{arGamma arFinal \cdot x:T  arGamma arFinal x:U}{arGamma arFinal \cdot x:T \wedge U} ~~(\wedge 	extsf{-1})$ |
| $\frac{\varGamma \vdash x: \{a:T\}}{\varGamma \vdash x.a:T}$                                               | $\frac{\varGamma \vdash t:T  \varGamma \vdash T <: U}{\varGamma \vdash t:U}$                                     |

$$\begin{array}{ll} \begin{array}{l} x:T\in \Gamma\\ \overline{\Gamma\vdash x:T} \end{array} & x\notin fv(U)\\ \hline \Gamma\vdash x:T \end{array} \\ \hline \Gamma\vdash x:T \end{array} & \Gamma \vdash x:U\\ \hline \Gamma\vdash x:T \vdash t:U\\ \hline \Gamma\vdash k:T & \Gamma, x:T\vdash u:U\\ \hline \Gamma\vdash let \ x=t \ \mbox{in}\ u:U \end{array} \\ \hline \hline \Gamma\vdash x:T \end{array} \\ \hline \hline \Gamma\vdash x:\forall(x:T)t:\forall(x:T)U \end{array} & \hline \Gamma\vdash x:T\\ \hline \hline \Gamma\vdash x:f(x:T)\\ \hline \hline \Gamma\vdash x:T \end{array} & \hline \hline \Gamma\vdash x:T\\ \hline \hline \Gamma\vdash x:T \land t=t:T\\ \hline \hline \Gamma\vdash x:T \land t=t:T\\ \hline \hline \Gamma\vdash x:T \land t=t:T\\ \hline \hline \Gamma\vdash x:T \land t=t:U \end{array} \\ \hline \begin{array}{l} \Gamma\vdash x:T & \Gamma\vdash T<:U\\ \hline \Gamma\vdash t:T & \Gamma\vdash T<:U \end{array} (SUB$$

### Definition Type Assignment

$$\begin{split} \frac{\varGamma \vdash t:T}{\varGamma \vdash \{a=t\}:\{a:T\}} \\ \Gamma \vdash \{A=T\}:\{A:T..T\} \end{split}$$

 $\frac{dom(d_1) \cap dom(d_2) = \emptyset}{\Gamma \vdash d_1 : T_1 \quad \Gamma \vdash d_2 : T_2} \\ \frac{\Gamma \vdash d_1 \wedge d_2 : T_1 \wedge T_2}{\Gamma \vdash d_1 \wedge d_2 : T_1 \wedge T_2}$ 

## Subtyping

| $\varGamma  \vdash  T <: T$                                                                                            | $rac{arGamma arFinal \ x: \{A:ST\}}{arGamma arFinal \ x: A <: T}$                                                                           |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{\varGamma \vdash S \mathrel{<:} T \qquad \varGamma \vdash T \mathrel{<:} U}{\varGamma \vdash S \mathrel{<:} U}$ | $\Gamma \vdash x : \{A : ST\}$                                                                                                               |
| $\varGamma  \vdash  T <: \top$                                                                                         | $\Gamma \vdash S <: x.A$                                                                                                                     |
| $\varGamma  \vdash  \bot <: T$                                                                                         | $\frac{\varGamma  \vdash  T <: U}{\varGamma  \vdash  \{a:T\} <: \{a:U\}}$                                                                    |
| $\varGamma  \vdash  T \wedge U <: T$                                                                                   | $\Gamma \vdash S_2 <: S_1 \qquad \Gamma \vdash T_1 <: T_2$                                                                                   |
| $\varGamma  \vdash  T \wedge U <: U$                                                                                   | $\overline{\Gamma \vdash \{A: S_1T_1\} <: \{A: S_2T_2\}}$                                                                                    |
| $\frac{\varGamma \vdash S <: T \qquad \varGamma \vdash S <: U}{\varGamma \vdash S <: T \land U}$                       | $\frac{\varGamma \vdash S_2 <: S_1 \qquad \varGamma, \ x: S_2 \vdash T_1 <: T_2}{\varGamma \vdash \forall (x:S_1)T_1 <: \forall (x:S_2)T_2}$ |

## Subtyping

| $\varGamma \vdash T <: T$                                                        | $rac{arGamma dash x: \{A:ST\}}{arGamma dash x: xA <: T} 	ext{(TSel-<:)}$  |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| $\varGamma  \vdash  S \mathrel{<:} T \qquad \varGamma  \vdash  T \mathrel{<:} U$ |                                                                            |
| $arGamma  \vdash  S <: U$                                                        | $\frac{\Gamma \vdash x : \{A : ST\}}{(<:-TSEL)}$                           |
| $\varGamma \vdash T \mathrel{<:} \top$                                           | $\Gamma \vdash S <: x.A$                                                   |
| $\varGamma  \vdash  \bot <: T$                                                   | $\frac{\varGamma \vdash T <: U}{\varGamma \vdash \{a:T\} <: \{a:U\}}$      |
| $\varGamma  \vdash  T \wedge U <: T$                                             | $\Gamma \vdash S_2 <: S_1 \qquad \Gamma \vdash T_1 <: T_2$                 |
| $\varGamma  \vdash  T \wedge U <: U$                                             | $\overline{\Gamma \vdash \{A: S_1T_1\} <: \{A: S_2T_2\}}$                  |
| $\varGamma  \vdash  S \mathrel{<:} T \qquad \varGamma  \vdash  S \mathrel{<:} U$ | $\varGamma \vdash S_2 <: S_1 \qquad \varGamma, \ x: S_2 \vdash T_1 <: T_2$ |
| $\Gamma \vdash S <: T \wedge U$                                                  | $\Gamma \vdash orall (x\!:\!S_1)T_1 <: orall (x\!:\!S_2)T_2$             |

#### Meta-Theory

Simple as it is, the soundness proof of DOT was surprisingly hard.

- Attempts were made since about 2008.
- Previous publications (FOOL 12, OOPSLA 14) report about (some) advances and (lots of) difficulties.
- Essential challenge: Subtyping theories are *programmer-definable*.

### **Programmer-Definable Theories**

In Scala and DOT, the subtyping relation is given in part by user-definable definitions:

type T >: S <: U { T: S .. U }

This makes T a supertype of S and a subtype of U.

```
By transitivity, S <: U.
```

So the type definition above proves a subtype relationship which was potentially not provable before.

#### **Bad Bounds**

What if the bounds are non-sensical? Example

```
type T >: Any <: Nothing</pre>
```

By the same argument as before, this implies that

```
Any <: Nothing
```

Once we have that, again by transitivity we get S <: T for arbitrary S and T.

That is, the subtyping relations collapses to a single point.

#### Bad Bounds and Inversion

A collapsed subtyping relation means that inversion fails.

Example: Say we have a binding  $x = \nu(x; T)$ ....

So in the corresponding environment  $\Gamma$  we would expect a binding  $x: \mu(x; T)$ .

But if every type is a subtype of every other type, we also get with subsumption that  $\Gamma \vdash x : \forall (x : S) U$  !

Hence, we cannot draw any conclusions from the type of x. Even if it is a function type, the actual value may still be a record.

#### Can We Exclude Bad Bounds Statically?

Unfortunately, no.

Consider:

```
type S = { type A; type B >: A <: Bot }
type T = { type A >: Top <: B; type B }</pre>
```

Individually, both types have good bounds. But their intersection does not:

```
type S & T == { type A >: Top <: Bot; type B >: Top <: Bot }
```

So, bad bounds can arise from intersecting types with good bounds. It turns out that even checking all intersections of a program statically

would not exclude bad bounds.

## Dealing With It

Observation: To prove preservation, we need to reason at the top-level only about environments that arise from an actual computation. I.e. in

If  $\Gamma \vdash t : T$  and  $t \longrightarrow u$  then  $\Gamma \vdash u : T$ .

the environment  $\Gamma$  corresponds to an evaluated let prefix, which binds variables to values.

And values have guaranteed good bounds because all type members are aliases.

 $\Gamma \vdash \{A = T\} : \{A : T..T\}$ 

The paper provides an elaborate argument how to make use of this observation for the full soundness proofs.

#### Variants

- First soundness proof by Tiark and Nada used big-step semantics for a variant of DOT.
- That variant is more powerful (and its meta-theory more complicated) because it deals with subtyping recursive types.
- The paper presents an independently developed proof that uses a small-step semantics.
- ▶ We took heed of Phil's advice of the importance of being stupid.

## Conclusion

