
Counting Successes:
Effects and Transformations 

for 
Non-Deterministic Programs

Nick Benton (Microsoft)

Andrew Kennedy (Facebook)

Martin Hofmann (LMU)

Vivek Nigam (UFPB)

1



Monads, Effect Systems

• Type-and-effect systems (Gifford & Lucassen, 1986)
• Γ ⊢ 𝑀: 𝐴, 𝜀

• 𝐴 ≔ ⋯ ∣ 𝐴՜
ε
𝐵

• Monads and computational metalanguage (Moggi, 
1989)
• 𝑋 ≔ ⋯ ∣ 𝑇𝑋

• (𝐴 ՜ 𝐵)∗= 𝐴∗ ՜ 𝑇 𝐵∗

• (Γ ⊢ 𝑀:𝐴)∗= Γ∗ ⊢ 𝑀∗: 𝑇(𝐴∗)

• let and val constructs, nice equational theory

2



1998: something in the air
TIC ICFP ICFP

3



Transformations

• HOOTS 1999

4



Realizability to the rescue

• Reading, Writing & Relations, APLAS 2006

• Could have been called “Optimizing Transformations for 
Free!”

• Interpret types as binary relations (PERs) over untyped
model
• Or refined types as relations over unrefined typed model

• Soundness of rules: terms related to themselves by 
interpretation of their types

• Soundness of transformations: different terms related 
to one another by interpretation of a type
• Γ ⊢ 𝑀 = 𝑀′: 𝐴

5



How to do this for “funny” type 
systems?

ℛ𝜖, ℛ𝑒 ⊆ ℙ 𝑆 × 𝑆

ℛ𝜖 = ሩ

𝑒∈𝜖

ℛ𝑒

ℛ𝑟ℓ = 𝑅 ∀ 𝑠, 𝑠′ ∈ 𝑅, 𝑠 ℓ = 𝑠′ℓ

ℛ𝑤ℓ
= {𝑅|∀ 𝑠, 𝑠′ ∈ 𝑅, 𝑛 ∈ ℤ. 𝑠 ℓ ↦ 𝑛 , 𝑠′ ℓ ↦ 𝑛 ∈ 𝑅}

𝑇𝜖𝑋 = ሩ

𝑅∈ℛ𝜖

𝑅 ⇒ 𝑅 × 𝑋

𝑇𝜖𝑋 ⊆ 𝑆 ՜ 𝑆 × 𝑈𝑋 × 𝑆 ՜ 𝑆 × 𝑈𝑋

Θ ⊢ 𝑀: 𝑇𝜖1𝑋 Θ, 𝑥: 𝑋, 𝑦: 𝑋 ⊢ 𝑁: 𝑇𝜖2𝑌

Θ ⊢ 𝑙𝑒𝑡 𝑥 ⇐ 𝑀; 𝑦 ⇐ 𝑀 𝑖𝑛 𝑁 = 𝑙𝑒𝑡 𝑥 ⇐ 𝑀 𝑖𝑛 𝑁 Τ𝑥 𝑦 : 𝑇𝜖1∪𝜖2𝑌
𝑟𝑑𝑠 𝜖1 ∩ 𝑤𝑟𝑠 𝜖1 = ∅

6



Extensions and variations

• Dynamic allocation (regions, masking)

• Higher-typed store (not entirely successful)

• Abstract locations (proof-relevant logical relations)

• Concurrency

• Exceptions

7



Non-Determinism

• How to Replace Failure by a List of Successes, 
Wadler 1985
• Shows how (lazy) lists can be used to program both 

computations with errors and logic-programming style 
backtracking search

• Now have MonadPlus in Haskell (and long-standing 
debates about what equations should be satisfied)

• Here: refined types for a simple (total) non-
deterministic language capturing how many results 
a computation may return
• Again, relational semantics gives equations 

8



Base language

• Computational metalanguage with operations

• Sets and functions with 𝑇𝐴 = ℙ𝑓𝑖𝑛 𝐴

9



Effect types

10



Refined types

11



Semantics

𝑤ℎ𝑒𝑟𝑒 𝑆~𝑋𝑆
′ ≝ ∀𝑎 ∈ 𝑆, ∃𝑎′ ∈ 𝑆′, 𝑎, 𝑎′ ∈ 𝑋 𝑎𝑛𝑑 𝑣. 𝑣.

𝑎𝑛𝑑 Τ𝑆 𝑋 ≝ 𝑎 𝑋 𝑎 ∈ 𝑆}

12



Results
• Get fundamental theorem, validates all usual 

equations of metalanguage

• Plus monad-specific, effect independent laws

13



Effect-dependent equivalences

14



Related

• Kammar & Plotkin POPL 2012
• General approach using algebraic effects
• Ours not an instance as refined interpretations not all monads

• Katsumata POPL 2014
• Monoidal functors from preordered monoid to endofunctors

on category of values
• (Also graded monads – but I just heard about this half an hour 

ago…)

• Lots of work on cardinality analysis in logic 
programming
• Mercury (Henderson et al) uses exactly the same set of 

cardinalities as us for optimizations

15



16



Type-specific equality

17



Correctness condition for 
operators on effect annotations

18


