Counting Successes:

Effects and Transformations
for
Non-Deterministic Programs

Nick Benton (Microsoft)
Andrew Kennedy (Facebook)
Martin Hofmann (LMU)
Vivek Nigam (UFPB)

Monads, Effect Systems

* Type-and-effect systems (Gifford & Lucassen, 1986)
e ' M:4, ¢

* Monads and computational metalanguage (Moggi,
1989)
e X = | TX

c (A-> B)'=A*"->T(B")
cIT'EM:A)"=T"FM"T(A")
* let and val constructs, nice equational theory

1998: something in the air

TIC

ICFP

S —

Optimizing ML
Using a Hierarchy of Monadic Types

Andrew Tolmach*

Pacific Software Research Center
Portland State University & Oregon Graduate Institute
Dept. of Computer Science, P.S.TU., P.O. Box 751, Portland, OR 97207,
apt@cs. pdx .edu

ICFP

Compiling Standard ML to Java Bytecodes

Nick Benton

Pers

Andrew Kennedy

George Russe

mmon IT, Ine.

Cambridge, UK.
{nick,andrew,george}@persimmon . co.uk

The marriage of effects and monads

Philip Wadler
Bell Laboratories, Lucent Technologies
wadler@research.bell-labs.com

Abstract. We describe a type system and typy
hierarchy of monads to describe and delimit a vl
non-termination, exceptions, and state, in a call-
guage. The type system and semantics can be usef
a variety of optimizing transformations in the p
dition, we describe a simple monad inferending a)
the mininmun effect fior each subexpression of a)
mare accurate effects information than local syn|

1 Introduction

Optimizers are often implemented as engines that
transformations to programs. Among the most im)
propagation of values from their defining site to tl

A=

F M=P\.£

v A=

A P\- M-TcA

an effert typing discipline to de-
tional effects within a program,
fposed monads for much the same
fects to monads, uniting two pre-
psearch, In particular, we show
leffect system of Talpin and Jou-
0 an analogous system for mon-
effect reconstruction algorithm.
1 allow one to transpose any ef-
nding monad system.

h as state or continuations, are
en as directed they may cure a
p wary of the side effects.

Fes ers in computing seek to
utational effects while delimiting
of research are the effect typing
ford and Lucassen [GL86, Luc87],
jd Jouvelot [T192, TJ94] among

invariant computations out of loops. If we use a pure(sreeeCT-Iree 7
based on the lambda caleulus as our compiler intermediate language, the
formations can be neatly described by the simple equations for beta-re
(Beta)

and for the exchange and hoisting of bindings

let x = e in ez = eafer /]

let @ = e in (let @y = ey in e3) =
let w2 = ez in (let x; = ey in eg)

(@1 @ FV(e2); w2 & FV(e1))
letrec f = = (Jet y = ¢y in e3) in e3 =
let y = &) in (letrec f x = ep in e3)

(@ f & FV(er)sy € FV(ea))
where FV(e) is the set of free variables of e. The side conditions nicely
the data dependence conditions under which the equations are vali

™ Supparted, in part, by the US Air Force Materiel Command under contrad
93-C-0069 and by the National Sdence Foundation under grant CCR-9508

(Exchange)

(RecHoist)

Tust available for a wide range of architectures and operat-
ing systems, but are actually installed on most modern ma-
chines. The idea of compiling a fanctional langnage such as
MLinto Java bytecodes is thus very appealing: as well as the
ohviows attraction of being able to Tun the same compiled
code on any machine with a JVM, the potential benefits of
interlanguage working between Java and ML are consider-
able.

Many existing compilers for functional languages have
the ability to call external functions written in another lan-
guage (usually C). Unfortunately, differences in memory
models and type systems make most of these foreign func-
tion interfaces awkward to use, limited in functionality and
even type-unsafe. Consequently, although there are, for ex-
ample, good functional graphics libraries which call X11,
the typical functional programmer probably doesn't bother
to nse a C language interface to call ‘everyday” library func-
tions to, alenlate an MD5 checksum, manipulate a GIF
file or access a database, She thus either does more work
than should be neressary, or gives up and uses another lan-
guage, This is surely a major factor holding back the wider

To appear in the 3rd ACM SIGPLAN Conference on
Funetional Programming, September 1998, Baltimore

Tava 1tsell 15 often criticised 1]
running code which does signifi
and its bytecodes were certainly
tion of other languages in mind
for low-level backend trickery si
the garbage collector, heap layol
that compiled ol ssses pass the Jy
constraints on the code we gen
Java virtual machines not only
a fixed-size stack, but also fail |
the initial prospects for generati
byteco des fram a fanctional lang
first very simple-minded lambdi
plus an early JVM ran the nfib
than Mescow ML), and it was ¢
Java bytecode compiler would!
optimisations, MLJ is still a w¢
scope for significant improvemes
and the generated code (in pat
still only optimises simple tail g
usable on source programs of sey
duces code which, with a good
performs the popular Moscow §

others, and the use of menads, proposed by Moggi [Mog89,
Mog®1], and pursued by myself [Wad90, Wad92, Wadg3,
Wadl5] among; others, Effect sy y found in
strict languages, such as FX [GJLSST] (a variant of Lisp),
while monads are typically found in lazy languages, such as
Haskell [PHI7].

In my purstit of monads, | wrote the following:

. the use of monads is similar to the use of effect
systems ... An intrigning o iom is whether &
similar form of type inference could apply to a
language hased on monads. [Wad92]

Half a decade later, I can answer that question in the affir-
mative. Goodness knows why it took so long, because the
correspondence between effects and monads turns out to be
surprisingly close,

The marriage of effects and monads Recall that a
monad language introduces a type T to represent a com-
putation that yields a value of type = and may have side
effects. If the call-by-value translation of 7 is !, then we
have that (r — r] where — represents a fuumnn that

may have side effects, is equal to rt = T 7', where = rep-
resents a pure function with no side effects.

Recall also that an effect system labels each function with
its possible effects, so a function type is now written © 5 1,
indicating a fun that may have effects delimited by a.

The innovation of this paper is to marry effects to mon-
ads, writing T° 7 for a computation that yields a value in
 and may have eHects delimited hy o. Now we have that
rS st a1t

The monad translation offers insight into the structure of
the original effect system. In the original system, variables
and lambda abstractions are labelled with the empty effect,
and applications are labeled with the union of three effects
(the effects of evaluating the function, the argnment, and
the function body). In the monad system, effects appear in
just two places: the ‘unit’ of the monad, which is labeled
with the empty effect; and the ‘bind’ of the monad, which
is laheled with the union of two effects. The translation of
variables and lambda abstractions introduces ‘unit’, hence
they are labeled with an empty effect; and the translation
of application introduces two occurrences of ‘bind’, hence it
is labeled wuh a union of three effects (each U symbol in
g Ua' Ug"” coming from one ‘bind’)

Transposing effects to monads Several effect systems
have been proposed, carrying more or less type informa-
tion, and dealing with differing computational effects such
as state or continuations [GL86, Lucs7, JGBY, TJ92, TJ94].
Java contains a simple effect system, without effect vari-
ables, where each method is labeled with the exceptions it
might raise [GJS96].

For concreteness, this paper works with the type, region,
and effect system proposed hy Talpin and Jouvelot [TJ92],
where effects indicate which regions of store are initialised,
read, or written. All of Talpin and Jouvelot's results trans-
pose in a straightforward way to a monad formulation. It
seems clear that other effect systems can be transposed to
monads in a similar way. For instance, Talpin and Jou-
velot later proposed a variant system [T194], and Tofte and
Bikedal [TD98| propose a system for analysing memory al-
location, and it appear either of these might work equally
well as a basis for a monad formulation.

The system used in [TJ92] allows many effect variables
to appear in a union and maintains sets of constraints on
effects, while the systems used in [TJ94] and [TBO§| re-
quires exactly one effect variable to appear i each union
and requires no constraints other than those imposed by
unification. Either form of bookkeeping appears to trans-
pose readily to the monad setting.

3

Transformations

ek = MmN = N
§] 4 fvln)

, W) dwerae
dnkh M Moeswh) wrie o dradv

i) Harow vy 9‘1“?\“"‘5
(Ve ahwsed 4o rad ol for 0\\\““\&‘*@\&]\“ \

* HOOTS 1999

Realizability to the rescue

* Reading, Writing & Relations, APLAS 2006

* Could have been called “Optimizing Transformations for
Freel”

* Interpret types as binary relations (PERs) over untyped
model

* Orrefined types as relations over unrefined typed model

e Soundness of rules: terms related to themselves by
interpretation of their types

 Soundness of transformations: different terms related
to one another by interpretation of a type

*THM=M"A

How to do this for “funny” type
systems?

[T.X] < (S - S x [UX]) X (S = S x [UX])

[T.X] = ﬂ R = R X [X]

RER,

R., R, S P(S X S)

Re = ﬂRe

eEe

Ry, ={RIV(s,s") ER,s £ = 5"t}

Ry, ={R|V(s,s") ER,n €Z.(s[£ » n],s'[£ - n]) € R}

?

OFM:T, X O,x:X,y:XFN:T.Y
OrletxeM;yeMinN=Iletx «MinN[x/yl: Tc ue,Y

rds(e;) Nwrs(e;) = 0

Extensions and variations

* Dynamic allocation (regions, masking)

* Higher-typed store (not entirely successful)

* Abstract locations (proof-relevant logical relations)
* Concurrency

* Exceptions

Non-Determinism

* How to Replace Failure by a List of Successes,
Wadler 1985

e Shows how (lazy) lists can be used to program both
computations with errors and logic-programming style
backtracking search

 Now have MonadP1lus in Haskell (and long-standing
debates about what equations should be satisfied)

* Here: refined types for a simple (total) non-
deterministic language capturing how many results
a computation may return

* Again, relational semantics gives equations

Base language

 Computational metalanguage with operations

I'Ffail: TA

* Sets and functions with [TA]

[I'FvalV :TA]
[I'Fletx<«< M in N|

[I'F fail: T'A

[1"+ Myor My : T A

I'=M,:TA

I'=M;:TA

I'EMiorMs:TA

p={[I"HV:A]

P = U’UE[[FI—M:A] P

p=10

— [P)fin([[A]])

P
[Ix: AFN:TB](p,v)

p=([I"FM :TA]p)U([L'F My :TA]p)

Effect types

X,Y :=unit |int |bool | X xY | X —» T.Y
e € {0,1,01, 1+, N}

N
RS
1] = N|| = +
[01] = {0,1} 0/ \1/

10

Refined types

OFV:X OFM:T.X O,2:XFN:T.Y

OFvalV : T X OFletz<=Min N :1T. .Y

OFM T, X OFMy:T.,X

O fail : ToX OF Myor My :Tey 4oy X
o 1 011+ N +/0 1 011+ N
0jo0 0 0 0 0 0/0 1 011+ N
10 1 011+ N 101 1+ 1+ 1+ 1+
01{0 0101 N N 01|01 1+ N 1+ N
1+{0 1+ N 1+ N 141+ 1+ 1+ 1+ 1+
NJON N N N N|N 1+ N 1+ N

Semantics

[X] € [U(O] * [U(X)]
[int] = Az [bool] = Ap [unit] = A,
[X x Y] = [X] x[Y]

[X - T.Y] =[X] — [1.Y]

[T-X] = {(5,5") | S ~x 5" and |S/[X]] € [¢] }

where S~yS' ¥ Va € S,3a’ € S',(a,a’) € [X] and v.v.

and S/[X] & {[a][[X]]|a € S}

12

Results

 Get fundamental theorem, validates all usual
equations of metalanguage

* Plus monad-specific, effect independent laws

Choice:
OFM :T:, X OF M :T.,X
@ k]\/fl or J\/{Z =]\/Ig or M1 : T51+52X
OFM:T.X OFM:T.X
OFMorM=M:T.X OF Morfail=M :T: X
OFM :T:, X OFM;:T., X OFM3;:T.,X

@ H]V[l or (]\/fg or]\/13) = (]\/[1 or]\/[2) or]\/[3 . T51+52+53X

Commutativity:

OFM:1.Y OFN:T.,X O,z:X,y:YFP: 1,7

OFletx<=Minlety<=NinP =1lety<=Ninletax<=Min P : 1. .cp.c5 2

Distribution:

OFM :T:, X OFM;:T., X ©,x:XFN:T.,Y

OFletx<(Mior M) in N = (let x<=M; in N)or (let <=Mz in N) : T, 1 ep)e5 Y

Effect-dependent equivalences

Fail:
O+ M:TyX

OF M =fail:ToX

Dead Computation:
OFM:T. X OFN:T.Y

OFletz<=MinN=N:T.Y
Duplicated Computation:

OFM: T X O,x: X,y: XEFN:T.Y

letz<=M inlet y<=M in N

oF _ let z<=M in Nz /y]

: To1.eY

Pure Lambda Hoist:
OFM:1T\Z O,x:X,y:ZFN:1T.Y

val (Az: U(X).lety<=Min N)
= lety< M inval (A\z: U(X).N) °

o+ T\ (X = T.Y)

14

Related

e Kammar & Plotkin POPL 2012

* General approach using algebraic effects
* Ours not an instance as refined interpretations not all monads

e Katsumata POPL 2014

* Monoidal functors from preordered monoid to endofunctors
on category of values

* (Also graded monads — but | just heard about this half an hour
ago...)
* Lots of work on cardinality analysis in logic
programming
* Mercury (Henderson et al) uses exactly the same set of
cardinalities as us for optimizations

16

Type-specific equality

For example, if we define

fi = Ag:unit — T'int.let x<g() inlety<g()invalx +y
fo=Ag:unit — Tint.letx<g() inval z + x

then we have F f; = fo: (unit — To;int) — Thiint and hence, for example,
b (val f1)or (val fo) = val fy: Ti((unit — Thiint) — Thiint).
Note that the notion of equivalence really is type-specific. We have
/ f1 = fo: (unit — Tyint) — Tyint

and that equivalence indeed does not hold in the semantics, even though both
f1 and fy are related to themselves at (i.e. have) that type.

17

Correctness condition for
operators on effect annotations

Al < |[AUB| <[A[+|B|
which leads to the following:

Lemma 5. For any 1,9,

Uae[[ell],be[[sgﬂ{n | max(a,b) <n andn < a+b} C[e; + &3]
UaE[[E1]] U(b1,---,ba)€[[82]]“{n ’ VZ,b7 S n andn S 2167} Q [51 . 82]].

18

