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Monads, Effect Systems

* Type-and-effect systems (Gifford & Lucassen, 1986)
e ' M:4, ¢

* Monads and computational metalanguage (Moggi,
1989)
e X = | TX

c (A-> B)'=A*"->T(B")
cIT'EM:A)"=T"FM"T(A")
* let and val constructs, nice equational theory



1998: something in the air
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Fes ers in computing seek to
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ford and Lucassen [GL86, Luc87],
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invariant computations out of loops. If we use a pure(sreeeCT-Iree 7
based on the lambda caleulus as our compiler intermediate language, the
formations can be neatly described by the simple equations for beta-re
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and for the exchange and hoisting of bindings

let x = e in ez = eafer /]

let @ = e in (let @y = ey in e3) =
let w2 = ez in (let x; = ey in eg)

(@1 @ FV(e2); w2 & FV(e1))
letrec f = = (Jet y = ¢y in e3) in e3 =
let y = &) in (letrec f x = ep in e3)

(@ f & FV(er)sy € FV(ea))
where FV(e) is the set of free variables of e. The side conditions nicely
the data dependence conditions under which the equations are vali
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Tust available for a wide range of architectures and operat-
ing systems, but are actually installed on most modern ma-
chines. The idea of compiling a fanctional langnage such as
MLinto Java bytecodes is thus very appealing: as well as the
ohviows attraction of being able to Tun the same compiled
code on any machine with a JVM, the potential benefits of
interlanguage working between Java and ML are consider-
able.

Many existing compilers for functional languages have
the ability to call external functions written in another lan-
guage (usually C). Unfortunately, differences in memory
models and type systems make most of these foreign func-
tion interfaces awkward to use, limited in functionality and
even type-unsafe. Consequently, although there are, for ex-
ample, good functional graphics libraries which call X11,
the typical functional programmer probably doesn't bother
to nse a C language interface to call ‘everyday” library func-
tions to, alenlate an MD5 checksum, manipulate a GIF
file or access a database, She thus either does more work
than should be neressary, or gives up and uses another lan-
guage, This is surely a major factor holding back the wider

To appear in the 3rd ACM SIGPLAN Conference on
Funetional Programming, September 1998, Baltimore
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others, and the use of menads, proposed by Moggi [Mog89,
Mog®1], and pursued by myself [Wad90, Wad92, Wadg3,
Wadl5] among; others, Effect sy y found in
strict languages, such as FX [GJLSST] (a variant of Lisp),
while monads are typically found in lazy languages, such as
Haskell [PHI7].

In my purstit of monads, | wrote the following:

. the use of monads is similar to the use of effect
systems ... An intrigning o iom is whether &
similar form of type inference could apply to a
language hased on monads. [Wad92]

Half a decade later, I can answer that question in the affir-
mative. Goodness knows why it took so long, because the
correspondence between effects and monads turns out to be
surprisingly close,

The marriage of effects and monads Recall that a
monad language introduces a type T to represent a com-
putation that yields a value of type = and may have side
effects. If the call-by-value translation of 7 is !, then we
have that (r — r] where — represents a fuumnn that

may have side effects, is equal to rt = T 7', where = rep-
resents a pure function with no side effects.

Recall also that an effect system labels each function with
its possible effects, so a function type is now written © 5 1,
indicating a fun that may have effects delimited by a.

The innovation of this paper is to marry effects to mon-
ads, writing T° 7 for a computation that yields a value in
 and may have eHects delimited hy o. Now we have that
rS st a1t

The monad translation offers insight into the structure of
the original effect system. In the original system, variables
and lambda abstractions are labelled with the empty effect,
and applications are labeled with the union of three effects
(the effects of evaluating the function, the argnment, and
the function body). In the monad system, effects appear in
just two places: the ‘unit’ of the monad, which is labeled
with the empty effect; and the ‘bind’ of the monad, which
is laheled with the union of two effects. The translation of
variables and lambda abstractions introduces ‘unit’, hence
they are labeled with an empty effect; and the translation
of application introduces two occurrences of ‘bind’, hence it
is labeled wuh a union of three effects (each U symbol in
g Ua' Ug"” coming from one ‘bind’)

Transposing effects to monads Several effect systems
have been proposed, carrying more or less type informa-
tion, and dealing with differing computational effects such
as state or continuations [GL86, Lucs7, JGBY, TJ92, TJ94].
Java contains a simple effect system, without effect vari-
ables, where each method is labeled with the exceptions it
might raise [GJS96].

For concreteness, this paper works with the type, region,
and effect system proposed hy Talpin and Jouvelot [TJ92],
where effects indicate which regions of store are initialised,
read, or written. All of Talpin and Jouvelot's results trans-
pose in a straightforward way to a monad formulation. It
seems clear that other effect systems can be transposed to
monads in a similar way. For instance, Talpin and Jou-
velot later proposed a variant system [T194], and Tofte and
Bikedal [TD98| propose a system for analysing memory al-
location, and it appear either of these might work equally
well as a basis for a monad formulation.

The system used in [TJ92] allows many effect variables
to appear in a union and maintains sets of constraints on
effects, while the systems used in [TJ94] and [TBO§| re-
quires exactly one effect variable to appear i each union
and requires no constraints other than those imposed by
unification. Either form of bookkeeping appears to trans-
pose readily to the monad setting.
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Transformations
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Realizability to the rescue

* Reading, Writing & Relations, APLAS 2006

* Could have been called “Optimizing Transformations for
Freel”

* Interpret types as binary relations (PERs) over untyped
model

* Orrefined types as relations over unrefined typed model

e Soundness of rules: terms related to themselves by
interpretation of their types

 Soundness of transformations: different terms related
to one another by interpretation of a type

*THM=M"A



How to do this for “funny” type
systems?

[T.X] < (S - S x [UX]) X (S = S x [UX])

[T.X] = ﬂ R = R X [X]

RER,

R., R, S P(S X S)

Re = ﬂRe

eEe

Ry, ={RIV(s,s") ER,s £ = 5"t}

Ry, ={R|V(s,s") ER,n €Z.(s[£ » n],s'[£ - n]) € R}

?

OFM:T, X O,x:X,y:XFN:T.Y
OrletxeM;yeMinN=Iletx «MinN[x/yl: Tc ue,Y

rds(e;) Nwrs(e;) = 0



Extensions and variations

* Dynamic allocation (regions, masking)

* Higher-typed store (not entirely successful)

* Abstract locations (proof-relevant logical relations)
* Concurrency

* Exceptions



Non-Determinism

* How to Replace Failure by a List of Successes,
Wadler 1985

e Shows how (lazy) lists can be used to program both
computations with errors and logic-programming style
backtracking search

 Now have MonadP1lus in Haskell (and long-standing
debates about what equations should be satisfied)

* Here: refined types for a simple (total) non-
deterministic language capturing how many results
a computation may return

* Again, relational semantics gives equations



Base language

 Computational metalanguage with operations

I'Ffail: TA

* Sets and functions with [TA]

[I'FvalV :TA]
[I'Fletx<«< M in N|

[I'F fail: T'A

[1"+ Myor My : T A

I'=M,:TA

I'=M;:TA

I'EMiorMs:TA

p={[I"HV:A]

P = U’UE[[FI—M:A] P

p=10

— [P)fin([[A]])

P
[Ix: AFN:TB](p,v)

p=([I"FM :TA]p)U([L'F My :TA]p)



Effect types

X,Y :=unit |int |bool | X xY | X —» T.Y
e € {0,1,01, 1+, N}

N
RS
1] = N|| = +
[01] = {0,1} 0/ \1/
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Refined types

OFV:X OFM:T.X O,2:XFN:T.Y

OFvalV : T X OFletz<=Min N :1T. .Y

OFM T, X OFMy:T.,X

O fail : ToX OF Myor My :Tey 4oy X
o 1 011+ N +/0 1 011+ N
0jo0 0 0 0 0 0/0 1 011+ N
10 1 011+ N 101 1+ 1+ 1+ 1+
01{0 0101 N N 01|01 1+ N 1+ N
1+{0 1+ N 1+ N 141+ 1+ 1+ 1+ 1+
NJON N N N N|N 1+ N 1+ N




Semantics

[X] € [U(O] * [U(X)]
[int] = Az [bool] = Ap [unit] = A,
[X x Y] = [X] x[Y]

[X - T.Y] =[X] — [1.Y]

[T-X] = {(5,5") | S ~x 5" and |S/[X]] € [¢] }

where S~yS' ¥ Va € S,3a’ € S',(a,a’) € [X] and v.v.

and S/[X] & {[a][[X]]|a € S}
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Results

 Get fundamental theorem, validates all usual
equations of metalanguage

* Plus monad-specific, effect independent laws

Choice:
OFM :T:, X OF M :T.,X
@ k ]\/fl or J\/{Z = ]\/Ig or M1 : T51+52X
OFM:T.X OFM:T.X
OFMorM=M:T.X OF Morfail=M :T: X
OFM :T:, X OFM;:T., X OFM3;:T.,X

@ H ]V[l or (]\/fg or ]\/13) = (]\/[1 or ]\/[2) or ]\/[3 . T51+52+53X

Commutativity:

OFM:1.Y OFN:T.,X O,z:X,y:YFP: 1,7

OFletx<=Minlety<=NinP =1lety<=Ninletax<=Min P : 1. .cp.c5 2

Distribution:

OFM :T:, X OFM;:T., X ©,x:XFN:T.,Y

OFletx<(Mior M) in N = (let x<=M; in N)or (let <=Mz in N) : T, 1 ep)e5 Y



Effect-dependent equivalences

Fail:
O+ M:TyX

OF M =fail:ToX

Dead Computation:
OFM:T. X OFN:T.Y

OFletz<=MinN=N:T.Y
Duplicated Computation:

OFM: T X O,x: X,y: XEFN:T.Y

letz<=M inlet y<=M in N

oF _ let z<=M in Nz /y]

: To1.eY

Pure Lambda Hoist:
OFM:1T\Z O,x:X,y:ZFN:1T.Y

val (Az: U(X).lety<=Min N)
= lety< M inval (A\z: U(X).N) °

o+ T\ (X = T.Y)
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Related

e Kammar & Plotkin POPL 2012

* General approach using algebraic effects
* Ours not an instance as refined interpretations not all monads

e Katsumata POPL 2014

* Monoidal functors from preordered monoid to endofunctors
on category of values

* (Also graded monads — but | just heard about this half an hour
ago...)
* Lots of work on cardinality analysis in logic
programming
* Mercury (Henderson et al) uses exactly the same set of
cardinalities as us for optimizations
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Type-specific equality

For example, if we define

fi = Ag:unit — T'int.let x<g() inlety<g()invalx +y
fo=Ag:unit — Tint.letx<g() inval z + x

then we have F f; = fo: (unit — To;int) — Thiint and hence, for example,
b (val f1)or (val fo) = val fy: Ti((unit — Thiint) — Thiint).
Note that the notion of equivalence really is type-specific. We have
/ f1 = fo: (unit — Tyint) — Tyint

and that equivalence indeed does not hold in the semantics, even though both
f1 and fy are related to themselves at (i.e. have) that type.
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Correctness condition for
operators on effect annotations

Al < |[AUB| <[A[+|B|
which leads to the following:

Lemma 5. For any 1,9,

Uae[[ell],be[[sgﬂ{n | max(a,b) <n andn < a+b} C[e; + &3]
UaE[[E1]] U(b1,---,ba)€[[82]]“{n ’ VZ,b7 S n andn S 2167} Q [51 . 82]].
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