A few of LFCS’s
greatest hits

Philip Wadler
University of Edinburgh
13 April 2016



Burstall, MacQueen, and
Sannella: Hope (1930)



HOPE: AN EXPERIMENTAL APPLICATIVE LANGUAGE

R.M. Burstall
D.B. MacQueen!
D.T. Sannella

Department of Computer Science
University of Edinburgh
Edinburgh, Scotland

ABSTRACT: An applicative language called HOPE
is described and discussed. The underlying goal of
the design and implementation effort was to produce
a very simple programming language which encourages
the construction of clear and manipulable programs.
HOPE does not include an assignment statement; this
is felt to be an important simplification. The
user may freely define his own data types, without
the need to devise a complicated encoding in terms
of low-level types. The language is very strongly
typed, and as implemented it 1incorporates a
typechecker which handles polymorphic types and
overloaded operators. Functions are defined by a
set of recursion equations; the left-hand side of
each equation includes a pattern used to determine
which equation to use for a given argument. The
availability of arbitrary higher-order types allows
functions to be defined which 'package' recursion.
Lazily-evaluated lists are provided, allowing the
use of infinite 1lists which could be used to
provide interactive input/output and concurrency.
HOPE also includes a simple modularisation facility
which may be used to protect the implementation of
an abstract data type.

2. DESIRABLE PROGRAMMING LANGUAGE FEATURES

The following points seem important in a
language for writing correct and flexible programs.
They are 1listed rather briefly but they are
illustrated in the description of HOPE which
follows.

No assignment: referential transparency

Applicative languages which work in terms of
expressions and their values, using recursion
instead of loops, seem much clearer and less
error-prone. The expressions are transparent in
the sense that their value depends only on their
textual context and not on some notion of
computational history. Each variable is given a
value just once where it 1is declared. Assignments
which alter data structures are particularly prone
to cause bugs; disallowing them greatly simplifies
the language although it does slow down execution.
Backus [2] makes this case strongly.

Maximum use of user-defined types

The user should define his own types whenever
possible; thus type ‘age' rather than type
'integer'. The machine must check these types.



3.3. DEFINING FUNCTIONS

Before a function is defined, its type must be
declared. For example:

dec reverse : list(alpha) -> 1list(alpha)

HOPE is a very strongly-typed language, and the
HOPE system includes a polymorphic typechecker (a
modification of the algorithm in [27]) which is
able to detect all type errors at compile time.
Function symbols may be overloaded. When this is
done, the typechecker is able to determine which
function definition belongs to each instance of the
function symbol.

Functions are defined by a sequence of one or
more gequations, where each equation specifies the
function over some subset of the possible argument
values., This subset is described by a pattern (see

section 3.2) on the left-hand side of the equation.
For example:

--- reverse(nil) <= nil (1)
--- reverse(a::1l) <= reverse(l) < [al (2)

(the symbol <> is infix append ). This defines the
(top-level) reverse of a list; for example:

reverse(1::(2::nil)) = reverse(2::nil) < [1]
= (reverse(nil) < [2]) < [1]
= (nil ¢ [2]) © [1]



node(tip(suce(0)),
node(tip(suce(suce(0))),tip(0)))

But we would like to have trees of lists and
trees of trees as well, without having to define
them all separately. So we declare a Lype yvariable

Yypevar alpha

which when used in a type expression denotes any
type (including second- and higher-order types). A
general definition of tree as a parametric type is
now possible:

data tree(alpha) == empty ++ tip(alpha)
++ node(tree(alpha)#tree(alpha))

Now tree is not a type but a unary type constructor
-- the type numtree can be dispensed with in favour
of tree(num) .



module list_iterators
pubconst *, **

LYypevar alpha, beta
dec * : (alpha->beta)#list alpha -> list beta
dec ** : (alpha#beta->beta)#(1list alpha#beta)

-> beta
infix *, ** : 6

-—- % nil <= nil
-—= £ ® (a::al) <= (f a)::(f ® al)

- g *% (n{1.,b) <=0
-~ g %% (g::31,b) <= g ** (al,g(a,b))

end

module tree_sort
pubconst sort
uses ordered_trees, list_iterators
dec sort : list num -> list num

--- gort(l) <= flatten(insert ## (1 empty))
end

Figure 1: A HOPE Program
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Abstract. The Edinburgh Logical Framework (LF) provides a means to define (or present) logics,
It is based on a general treatment of syntax, rules, and proofs by means of a typed A-calculus with
dependent types. Syntax is treated in a style similar to, but more gencral than, Martin-Lof’s
system of arities. The treatment of rules and proofs focuses on his notion of a judgment. Logics
are represented in LF via a new principle, the judgments as types principle, whereby each
judgment is identified with the type of its proofs. This allows for a smooth treatment of discharge
and variable occurrence conditions and leads to a uniform treatment of rules and proofs whereby
rules are viewed as proofs of higher-order judgments and proof checking is reduced to type
checking. The practical benefit of our treatment of formal systems is that logic-independent tools,
such as proof editors and proof checkers, can be constructed.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs; F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Formal systems, interactive theorem proving, proof checking,
typed lambda calculus

This work was initiated in the summer of 1986, and was first reported in July 1987 at the
Symposium on Logic in Computer Science in Ithaca, New York.



A Framework for Defining Logics
Valid Signatures
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"Provided that x is not free in Jr or any assumptions, other than ¢, on which  depends.

F1G. 3. Some rules of first-order logic



obj : holtype — Type,
0: obj(1),

suce : obj(v = 1),
+ 1 obj(L = v = 1),

X :obj(L =t = ),

< :obj(v = 1 = 0),

- : obj(o = 0),

A 2 objlo = 0 = 0),

vV :objlo = 0 = 0),

D :obj(o = 0 = 0),

= : Ils:holtype.obj(s = s = 0),

V : Ils:holtype.obi((s = 0) = o),

3 : Is:holtype.obj((s = o) = o),

A : Is:holtype 11t holtype (obj(s) — obj(t)) — obj(s = t),

ap : [s:holtype X1t:holtype.obj(s = t) — obj(s) — obj(1).



The variable-occurrence condition associated with the rule ALL-1 is repre-
sented using the dependent function space type of LE:

ALL-LITF e = o(x:e.true( Fx)) — true(V( Ax:uw.Fx)).

One may say that in natural deduction ALL-1 takes as premise a schematic (in
x) proof of a judgment, whereas in LF it takes as premise a proofl of a
schematic judgment. shifting the enforcement of the variable-occurrence condi-
tion from the object logic to LF. Note the similarity between the encoding of
ALL-1 and 1Mp-1 stemming from the fact that the nondependent function space
is a special case of the dependent function: variable-occurrence and discharge
conditions are closely related.

The existential elimination rule has both discharge and variable-occurrence
conditions:
SOME-E:I1F:v = o.Ilp:o.true(3( Ax:v.Fx))
— (Mx:e.true( Fx) — true( p)) — true( p).
Note that the variable-occurrence condition on the conclusion of SOME-E rule

is a matter of scoping: since p is bound outside of the scope of x, no instance
of p can have x free, as required by the existential elimination rule.
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Computational lambda-calculus and monads
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Abstract

The A-calculus is considered an useful mathematical tool in the study
of programming languages, since programs can be identified with A-terms.
However, if one goes further and uses (In-conversion to prove equivalence
of programs, then a gross simplification' is introduced. that may jeopardise
the applicability of theoretical results to real situations. In this paper we
introduce a new calculus based on a categorical semantics for computations.
This calculus provides a correct basis for proving equivalence of programs,
independent from any specific computational model.



T:C — C and two natural transformations n:1de —= T and p:T? = T s.t.
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T?A >TA
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which satisfies also an extra equalizing requirement: 1. A — T A s an equalizer
of npA and T(ny), t.e. for any f: B — TA s.t. finra = f;T(na) there exists a
unique m: B — A s.t. f=m;na°.



transformation s.t.
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RULE | SYNTAX SEMANTICS
var
LTy e ey Tl T BTl T = W Ny
let
I'Fe:m = ¢
'z F e = g2
['F (letxy=eyiney):me = (idgry, 91): bprp,inns 1921 Hn)
*
' x:1 - ![I‘ﬂ;nl
where !, 1s the only morphism from A to 1
()
'+ €1: T = 0
I' - €9. To = (g2
['F {e1.e2):m X 7 = {91. 92): Vpn] [r]
UF
I'FeTm xn = g
['E mle)n = ¢;T(m)
Table 3: Terms and their interpretation




e [et 15 the notion of reduction > defined by the following clauses:

id (letz=einzx) > e

comp (let zo=(let ry=€y1iney)ine) > (letx;=e; in(let xo=esine))

let, (letz=vine) > elr: = v]
let.1 no(e) > (let z=m inx(e))
let.2 v(imw) > (letx=mw inv(x))
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INFORMATION AND COMPUTATION 100, 1-40 (1992)

A Calculus of Mobile Processes, |
ROBIN MILNER

University of Edinburgh, Scotland

JOACHIM PARROW

Swedish Institute of Computer Science, Kista, Sweden

AND

DAvID WALKER

University of Warwick, England

We present the n-calculus, a calculus of communicating systems in which one can
naturally express processes which have changing structure. Not only may the com-
ponent agents of a system be arbitrarily linked, but a communication between
neighbours may carry information which chaoges that linkage. The calculus is an
extension of the process aigebra CCS, following work by Engberg and Nielsen, who
added mobility to CCS while preserving its algebraic properties. The =z-calculus
gains simplicity by removing all distinction between variables and constants; com-
munication links are identified by names, and computation is represented purely as
the communication of names across links. After an illusirated description of how
the n-calculus generalises conventional process algebras in treating mobility, several
examples exploiting mobility are given in some detail. The important examples are
the encoding into the =-calculus of higher-order functions (the /-calculus and com-
binatory algebra), the transmission of processes as values, and the representation of
data structures as processes. The paper continues by presenting the algebraic theory
of strong bisimilarity and strong equivalence, including a new notion of equivalence
indexed by distinctions—ie., assumptions of inequality among names, These
theories are based upon a semantics in terms of a labeled transition system and
a notion ol strong bisimulation, both of which are expounded in detail in a
companion paper. We also report briefly on work-in-progress based upon the
corresponding notion of weak bisimulation, in which internal actions cannot be
observed. T 1992 Academic Press, Inc.



The syntax of agents may be summarized as follows:

P =0

| P, + P,
yx. P
y(x).P
T.P
| Py P,
| (x)P
[x=y]P
A( Vs Vo)




The situation is not much different when the link v between P and Q is
private. In this case the proper flow graphs are

N\ /’\
Pyt ¥ Q Pt Q")
CJ:' - L g-\,/

\

S5 4

The privacy of the y-link is represented by a restriction, so the transition
IS NOW

(UPx.P'| y(2). Q) R —— (W) (P'|Q{x/z})| R. (2)



We translate each A-term M into a map [M] from names to agents. To
understand the agent [M]u, where u 1S any name (€ A" —¥"), we may
think of u as pointing to the argument sequence appropriate for a particular
occurrence of M. More precisely, if M eventually reduces to a A-abstraction
/xM', then the corresponding derivative of [ M|« will receive along the
Iink # two names: a pointer to M's first argument, and a pointer to the
rest of its argument sequence. Thus w represents a list, just as lists are
represented mm Example 7. Here 1s the full definition of the encoding
function [ ]:

[ixM]u Z u(x)(v).[M]v (33)
[xlu = %u (34)

def

IMNJu = (eIMJvl(x)oxu.x(w).INw) (x not free in N) (35)

Note that the variable x occurs free in the translation of the A-term x;
hence 1in Eq. (33) x will normally occur free in [ M]v.



Abramsky, Bellin, Scott,
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Theoretical Computer Science 135 (1994) 5-9 5
Elsevier

Proofs as processes

Samson Abramsky
Department of Computing, Imperial College, 180 Queen’s Gate, London SW7 2BZ, UK

The main purpose of this short paper is to serve as an introduction to the following
paper, “On the n-calculus and linear logic™, by Gianluigi Bellin and Philip Scott. The
circumstances from which it arises are as follows. In June 1991 I gave a lecture on
“Proofs as processes™ at the symposium held at Tel-Aviv University to celebrate Boris
Trakhtenbrot's 70th birthday [6]. Material from this lecture also appeared in lectures
subsequently given at the International Category Theory Meeting in Montreal (June
1991) and the London Mathematical Society Symposium on Category Theory in
Computer Science in Durham (July 1991). The material was also presented in my
tutorial lecture on linear logic given at the International Logic Programming Sympo-
sium in San Diego in October 1991. The lecture notes for these talks, particularly the
tutorial lecture, were quite widely circulated; however, I did not write up a paper for
publication, for reasons shortly to be explained.



My point of departure in this work was the “propositions as types” paradigm
(encompassing such notions as “Curry-Howard isomorphism”, realizability, func-
tional interpretation and BHK semantics) familiar from proof theory and typed
functional programming (see e.g. [9]). In this paradigm, we have the correspondences

Formulas Types
Proofs (Functional) Programs
Normalisation of proofs Computation

Thus a familiar proof rule such as implication elimination is equated to the type
inference rule for function application:

I'-t:A =B TI'+uA
I'—tu:B '




Proofs as processes

S
:r:A‘ I:r:/‘ll
1 i
A
Fig 1.
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On the m-calculus and linear logic

G. Bellin*

Equipe de Logique, Université de Paris VII, 2 Place Jussieu, 1'-75251 Paris Cedex 05, France

P.J. Scott**
Department of Mathematics, University of Ottawa, 585 King Edward, Ottawa, Ont., Canada KIN 6N 5

Abstract

Bellin, G. and P.J. Scott, On the n-calculus and linear logic, Theoretical Computer Science 135
(1994) 11-65.

We detail Abramsky's “proofs-as-processes™ paradigm for intzrpreting classical linear logic (CLL)
(Girard, 1987) into a “synchronous” version of the a-calculus recently proposed by Milner
(1992, 1993). The translation is given at the abstract level of proof structures. We give a detailed
treatment of information flow in proof-nets and show how to mirror various evaluation strategies
for proof normalization. We also give soundness and complet 2ness results for the process—calculus
translations of various fragments of CLL. The paper also gives a self-contained introduction to some
of the deeper proof-theory of CLL, and its process interpretation.



3.1. The Abramsky translation: the multiplicatives

Logical rule n-translation
XA, v:iA" Ixy=x(a)y{a)
F G
Fw:l,x:A Fv:4,y:B XY - " -
:i{': Iffi?: Az :lA ®yB - ® @ (F,G)ywvz=vxy(z{xy)(Fwx || Gvy))
‘F
Fw:lx:A,y:B . B
» (77 )(F)wz=2z(xy)Fwxy

w:l.z:A®B

F G
Fu:l,x:C Fo:4,y:C*
u:T,v: A

Cut  Cut*(F,G)uv=vz(Fu [z/x] ] Gv [z/y])



Honda, Kubo, Vasconcelos,
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LANGUAGE PRIMITIVES AND TYPE DISCIPLINE FOR
STRUCTURED COMMUNICATION-BASED PROGRAMMING

KOHEI HONDA*, VASCO T. VASCONCELOST, AND MAKOTO KUBO#?

ABSTRACT. We introduce basic language constructs and a type discipline as a foun-
dation of structured communication-based concurrent programming. The constructs,
which are easily translatable into the summation-less asynchronous m-calculus, allow
programmers to organise programs as a combination of multiple flows of (possibly
unbounded) reciprocal interactions in a simple and elegant way, subsuming the pre-
ceding communication primitives such as method invocation and rendez-vous. The
resulting syntactic structure is exploited by a type discipline a la ML, which offers
a high-level type abstraction of interactive behaviours of programs as well as guar-
anteeing the compatibility of interaction patterns between processes in a well-typed
program. After presenting the formal semantics, the use of language constructs is
illustrated through examples, and the basic syntactic results of the type discipline
are established. Implementation concerns are also addressed.

*Dept. of Computer Science, University of Edinburgh, UK. TDept. of Computer Science, University
of Lisbon, Portugal. *Dept. of Computer Science, Chiba University of Commerce, Japan.
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Propositions as sessions™

PHILIP WADLER

University of Edinburgh, South Bridge, Edinburgh EH8 9YL, UK
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Abstract

Continuing a line of work by Abramsky (1994), Bellin and Scott (1994), and Caires and Pfenning
(2010), among others, this paper presents CP. a calculus, in which propositions of classical linear
logic correspond to session types. Continuing a line of work by Honda (1993), Honda et al. (1998),
and Gay & Vasconcelos (2010), among others, this paper presents GV, a linear functional language
with session types, and a translation from GV into CP. The translation formalises for the first time
a connection between a standard presentation of session types and linear logic, and shows how a
modification to the standard presentation yields a language free from races and deadlock, where race
and deadlock freedom follows from the correspondence to linear logic.

‘The new connectives of linear logic have obvious meanings in terms of parallel
computation. [... ] Linear logic is the first attempt to solve the problem of parallelism at
the logical level, i.e., by making the success of the communication process only dependent
of the fact that the programs can be viewed as proofs of something, and are therefore
sound’.

—Girard 1987 (emphasis as in the original)



1 Introduction

Functional programmers know where they stand: upon the foundation of A-calculus. Its
canonicality i1s confirmed by its double discovery, once as natural deduction by Gentzen
and again as A-calculus by Church. These two formulations are related by the Curry—
Howard correspondence, which takes

propositions as types,
proofs as programs, and
normalisation of proofs as evaluation of programs.

The correspondence arises repeatedly: Hindley's type inference corresponds to Milner’s
Algorithm W; Girard’s System F corresponds to Reynold’s polymorphic A-calculus:
Peirce’s law In classical logic corresponds to Landin’s J operator (better known as
call/cc).



In Abramsky (1994) and Bellin & Scott (1994), the following two rules interpret the
linear connectives & and ’%.
PET.v:A OFA.z:B R-O.v:A. z:B
x(v.z).RFO,x:A®B

<>

vz x(vz}.[P|OQ)FT.Ax:ARB

Under their interpretation, A & B 1s the type of a channel which outputs a pair of an A and a
B, while A’g B is the type of achannel which inputs a pair of an A and a B. In the rule for @,
process vy.z.x(v.z}.(P | Q) allocates fresh channels y and z, transmits the pair of channels
y and z along x, and then concurrently executes P and Q. In the rule for ’&, process x(v.z).R
communicates along channel x obeying protocol A’ B; it receives from x the pair of names

y and z, and then executes R.
This work puts a twist on the above interpretation. Here we use the following two rules
to interpret the linear connectives @ and 3.
PHT.y:A OFAx:B R-O.v:A.x:B

R

vv.x(v}.(P|Q)FT.A.x:A®B - x(v).RFO,x: A¥B

Under the new interpretation, A @ B is the type of a channel which outputs an A and then
behaves as a B, while A’ B 1s the type of a channel which inputs an A and then behaves as
a B. In the rule for @, process vy.x(y}.(P | Q) allocates fresh variable y, transmits y along
x, and then concurrently executes P and Q. In the rule for ’&, process x(y).R receives name
y along x, and then executes R.



PET.v:A OFA.z:B 2 R-FO.v:A. z:B o
vv.zx(v.2} (P| Q) FT A x:A®B x(v.z).RFO, x:A¥B

PHT.v:A OFA.x:B & RO, v:A.x:B
vv.x(v}.(P|Q)FT.A.x:A®B x(v).RFO,x: A%B




Happy Birthday, LFCS!
Many happy returns!



