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Research in bigraphs Robin Milner, July 2006

Bigraphs are a model that represents, roughly speaking, a synthesis of the mobile
linkage of the π-calculus with the movement of regions in Mobile Ambients. The hope
is that they describe realistic systems in which both software and hardware (people or
sensors) move about. Think of an intelligent building, or a body sensor network mon-
itoring your state of health. One would like to use such a model both for description
(specification) and for programming.

An example
Here is a example, describing a simple interaction discipline that models sentient build-
ings—buildings whose infrastructure of sensors and computers assists the performance
of human occupants.
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Bigraphs are rigorous mathematical entities, but amenable to this kind of graphical
presentation used here. Each of the upper and lower diagrams is a bigraph representing
the state (much simplified) of two buildings and their occupants. A reconfiguration
changes one into the other.

Buildings are designated B. Each building here contains two rooms R, and each
room is equipped with a sensory computer C. Moreover, the infrastructure of each
building links all its computers, allowing them to communicate. Finally, agents A
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(perhaps humans with phones) may be somewhere in a building, either in a room or
not. Those in a room have been automatically sensed, and thus have access to the
building’s informatic infrastructure. In this example, independently of their location,
all five agents A are engaged in a conference call, represented by the long horizontal
link. Other links represent connections of the computer/sensors.

Many reconfigurations are possible. In this example agent ANN has severed her link
to the conference call. Simultaneously BOB has entered a room, and thus been sensed
and linked to the room’s resident sensor/computer. The conference link is identified
by a name x; this allows our system to be a subsystem of a larger system, with more
buildings etc, some of whose agents may be taking part in the same conversation. Thus
states of complex systems are composed from states of simpler ones.

Each particular interaction discipline for bigraphs is called a bigraphical reactive
system (BRS) and is characterised by two components: (1) A signature—a set of so-
called controls indicating the possible types of nodes. In this example the signature is
{A, B, C, R}. (2) A set of reaction rules defining the possible reconfigurations. (These
are not shown for our example, but their effect is illustrated.)

Finally, bigraphs represent the abstract as well as the concrete. For example, there
is a BRS representing the π-caclulus and another representing Mobile Ambients. By
combining the abstract with the concrete we can, for example, describe both the phys-
ical and the informatic activity in a building.

Topics for a project
The following are topics for bigraphical research, that could be mounted in my stay
in Paris, 2006–2007. I hope to engage French —and more generally European— re-
searchers in this work. The main theme is to develop simultaneously the theory and
practical applications of bigraphs. The bigraph model is not canonical —variants and
alternatives can be imagined— but it has at least enough power and flexibility to serve
as a case study for a theory to underpin future systems engineering. In all of this work
I hope to collaborate with the groups led by senior researchers in the Île-de-France:
Palamidessi and Miller at École Polytechnique and INRIA Futurs, Curien and Melliès
at Paris VII, Levy at INRIA Rocquencourt. My previous student James Leifer, who
developed some of the behavioural theory with me, is in Levy’s group. Leifer organ-
ised a 10-hour series of lectures and discussions which I gave in this topic in Paris in
September 2005; it was very well attended and will lead to further collaboration with
the above-mentioned researchers.

Behavioural equivalence and preorder. One wishes to know how agents (simple
or composite) in a BRS may be replaced by others that exhibit identical behaviour,
or possibly richer but compatible behaviour. This entails exact definition of the terms
‘identical’, ‘richer’ and ‘compatible’. Much work has been done on these problems in
existing process calculi, and therefore applies to the BRSs that represent them. But the
space of BRSs is much wider. We wish to see how far the existing behavioural theory
generalises to this space, and to identify any new concepts needed.

Morphisms. Any complex practical system can be modelled at many levels, each
suppressing more or less detail. For sentient buildings, for example, an action such
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Tower of informatic 
models

natural to call the former an explanation of the latter.4
We shall therefore assume that explanation is the principal relationship—with many

manifestations—that cements the tower of models that we call informatics. Using near-
synonyms we can express ‘model A explains model B’ in many ways; for example

model A represents, or specifies, or abstracts from, model B; or
model B realises, or implements, or refines, model A.

As a simple illustration, suppose that B is a programming language, whose behavior
is defined in one of the usual ways. One way is by structured operational semantics
(SOS), which is formal; another way is informal—a description in natural language of
how the runtime state changes. An example of the latter is the original description of
Algol60, an outstanding example of lucid prose.

Now let A be a specification logic, such as ZZ; its entities are sentences, and its
meaning defines the interpretation of each sentence. Then an explanation of the lan-
guage B by the logic A comprises—for each program P of B—a set S of A-sentences
concerning the operations, types, variables, inputs and outputs of P . The explanation
provides a way to prove that each sentence of S is satisfied by the behavior of P as de-
scribed in B. If S pre-exists P then it may be called a specification of P . It is unlikely
to determine P uniquely; the larger the set S, the more accurately is P determined.

Combination
The entities in a model need not be all of the same kind. Consider a model of the
flight of informatically controlled aircraft. This heterogeneus model combines at least
three parts: a model of the real world (locality, temperature, wind speed, . . . ) in which
the planes fly; an electro-mechanical model of the systems to be controlled; and a
specification (or explanation) of the controlling software. Consider also a model of
humans interacting with a computer; the model of the human components may involve
human attributes such as belief or sensation, as distinct from the way the computer is
described. These two examples show the need not only to combine informatic models,
but to combine them with others that are not informatic.

Such combination is best seen as a construction, not a relationship; it combines
the entities of different models, with extra behavioral description of how they interact.
Combinations abound in informatics. Further examples: hybrid systems mix differ-
ential equations with automata; coordination systems combine different programming
languages via shared data structures; and a distributed programming language may be
combined with a networking model to create a model of a pervasive system.

Towers
Let us declare a tower of models to be a collection of models built by combination
and related by explanation. A tower may be tall and thin, or short and broad. Breadth

4We tend to use ‘A explains B’ as an abbreviation for ‘A-entities explain B-entities’. This allows us to
dodge the question of how many A-entities are involved in explaining each B-entity. This surely varies from
case to case, but for this essay we shall use the abbreviated form ‘A explains B’ for all cases.
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Figure 4: A simplified model tower for aircraft construction

Such an analysis can often be based upon a specification in logical model, perhaps
a temporal logic; the logical sentences are chosen to characterise the desired behav-
ior of the embedded software (the program model). This software model has to be
combined—as remarked earlier—with an electro-mechanical model of the plane, as
well as a model of the plane’s environment. Thus we arrive at a tower like that shown
in Figure 4; of course this is only a simplification. The method chosen for analysis,
based upon abstract interpretation, can be seen as a refinement of the logic-based ap-
proach. An abstract interpretation of a program is a simplification of the program,
omitting certain details and making certain approximations, with the aim of rendering
detailed analysis feasible. Such abstraction is essential in situations where the state-
space is very large; but, to be sound, it must not conceal any undesirable behavior.
Thus, instead of choosing a fixed specification, one may choose an abstraction specifi-
cally to match those aspects of behavior that are essential. In the case of the Airbus, by
a careful choice of different abstractions, the analysis required to validate the embed-
ded programs was reduced to the extent that, with the assistance of programmed tools,
it could be completed.

The Airbus example illustrates that explanations and their validation can be cus-
tomised within the framework of a tower of models. It also illustrates the importance
of programmed analytical tools.

This concludes our examples. It is a good moment to answer a possible criticism of our
notions of model and explanation. The criticism is that whenever a model is defined,
the meaning of its entities—which are often symbolic—has to be expressed in some
formalism; thus a model does no more than translate between formalisms, and our
search for real meaning leads to an infinite regress.

Our answer is in two parts. First, every model-designer clearly has some meaning
in mind. A programming language, or a logic, or a process calculus, or a graphical
representation is never just a class of symbolic entities; its intended behavior is always
described, even if informally. Thus it is clearly inadequate to call such a class a model

9

By permission of Cambridge University Press this paper is reproduced from the book
From semantics to Computer Science; Essays in Memory of Gilles Kahn, to be
published early in 2009.

The tower of informatic models
Robin Milner

University of Cambridge

Abstract: Software science has always dealt with models of computation
that associate meaning with syntactical construction. The link between
software science and software engineering has for many years been ten-
uous. A recent initiative, model-driven engineering (MDE), has begun
to emphasize the role of models in software construction. Hitherto, the
notions of ’model’ entertained by software scientists and engineers have
differed, the former emphasizing meaning and the latter emphasizing tool-
based engineering practice. This essay finds the two approaches consis-
tent, and proposes to integrate them in a framework that allows one model
to explain another, in a sense that includes both implementation and vali-
dation.

This essay is dedicated in admiration to the memory of Gilles Kahn, a friend and guide
for thirty-five years. I have been struck by the confidence and warmth expressed to-
wards him by the many French colleagues whom he guided. As a non-Frenchman I
can also testify that colleagues in other countries have felt the same.

I begin by recalling two events separated by thirty years; one private to him and me,
one public in the UK. I met Gilles in Stanford University in 1972, when he was studying
for the PhD degree—which, I came to believe, he found unnecessary to acquire. His
study was, I think, thwarted by the misunderstanding of others. I was working on two
different things: on computer-assisted reasoning in a logic of Dana Scott based upon
domain theory, which inspired me, and on models of interaction—which I believed
would grow steadily in importance (as indeed they have). There was hope to unite
the two. Yet it was hard to relate domain theory to the non-determinism inherent in
interactive processes. I remember, but not in detail, a discussion of this connection
with Gilles. The main thing I remember is that he ignited. He had got the idea of
the domain of streams which, developed jointly with David MacQueen, became one of
the most famous papers in informatics; a model of deterministic processes linked by
streams of data.

The public event, in 2002, was the launching workshop of the UK Exercise in
Grand Challenges for Computing Research. It identified eight or so Grand Challenge
topics that now act as a focus for collaborative research; part of their effect is to unite
researchers who would otherwise never have communicated. Before the workshop we

1
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Reaction rules for virtual animals

b b

childalert

a

child

a

deerseen
lionalertlion deer

A child/lion becomes alert to a deer in its locale

A child/lion enters the game at spot [xy] A virtual lion moves to another spot
(similarly for a deer) (similarly for a deer)

child

[xy]

lion

[xy]field

( |x − x′| + |y − y′| = 1 )

a a′

[xy]
[x′y′]

lion

b[x′y′]
[xy]

a′a

lion

b

aa

/c (childc ‖ (lionac | deerb)) ! /c (childalertc ‖ (lionalertac | deerseenbc))
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Such an analysis can often be based upon a specification in logical model, perhaps
a temporal logic; the logical sentences are chosen to characterise the desired behav-
ior of the embedded software (the program model). This software model has to be
combined—as remarked earlier—with an electro-mechanical model of the plane, as
well as a model of the plane’s environment. Thus we arrive at a tower like that shown
in Figure 4; of course this is only a simplification. The method chosen for analysis,
based upon abstract interpretation, can be seen as a refinement of the logic-based ap-
proach. An abstract interpretation of a program is a simplification of the program,
omitting certain details and making certain approximations, with the aim of rendering
detailed analysis feasible. Such abstraction is essential in situations where the state-
space is very large; but, to be sound, it must not conceal any undesirable behavior.
Thus, instead of choosing a fixed specification, one may choose an abstraction specifi-
cally to match those aspects of behavior that are essential. In the case of the Airbus, by
a careful choice of different abstractions, the analysis required to validate the embed-
ded programs was reduced to the extent that, with the assistance of programmed tools,
it could be completed.

The Airbus example illustrates that explanations and their validation can be cus-
tomised within the framework of a tower of models. It also illustrates the importance
of programmed analytical tools.

This concludes our examples. It is a good moment to answer a possible criticism of our
notions of model and explanation. The criticism is that whenever a model is defined,
the meaning of its entities—which are often symbolic—has to be expressed in some
formalism; thus a model does no more than translate between formalisms, and our
search for real meaning leads to an infinite regress.

Our answer is in two parts. First, every model-designer clearly has some meaning
in mind. A programming language, or a logic, or a process calculus, or a graphical
representation is never just a class of symbolic entities; its intended behavior is always
described, even if informally. Thus it is clearly inadequate to call such a class a model
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Fig. 1: Generators for C0.

2.5 Discussion
We have introduced so far a simple calculus that rewrites proteins struc-
tured as connected domains. Proteins can be connected to each others
(as in complex formation), new domains can be fused to proteins (as in
protein synthesis) or severed (as trans-membrane proteins can be cleaved
to emit signal in the inter cellular medium). This calculus is fairly ab-
stract in the sense that two proteins may only di�er in the number of
domains they have and in the number of sites these domains possess. It
is clear that we lack means of naming molecular components such as do-
main names (SH2, Tyrosine, PWWP etc.) or protein names (SOS, EGF,
IGF, p53, etc.). Before performing a bigger increment in expressiveness,
when we introduce compartments in Section 4, we would like to briefly
introduce a way to deal with names as a particular type of context in
which unamed proteins can be embedded. The intent is to provide a way
to define molecular reactions as refinements of the generators we have
just presented, in keeping with the biological intuition that information
about molecular objects is always partial and that more context could
reveal more about the nature of a molecule. In particular we have the on-
tology problem in mind that several names can denote the same protein
or gene.

3 C1: naming molecules

3.1 Terms
Consider a new set of names M that is pairwise disjoint form B and S.
Terms of C1 are essentially those of C0 where domains have an extra meta
name m,m� � M that will point to new type of terms called info terms
(variable I, J, . . . ). Let I be a set of terminal symbols (distinct from all
previous ones) called informations (think of protein or domain names).
The grammar of C1 is:

D,D� ::= Da
m(x1, . . . , xk) a � B, m � M, xi � S (domains)

I, J ::= Infom info � I, m � M (info)
T, S ::= 0 | D | I | (T, S) | T\v for v � S ⇥ B ⇥M (named terms)

5
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across several membranes by di�using only a part of it, violating the de-
sired invariant that only a backbone edge may cross a compartment (in
the case of a receptor). In order to correct for this, we need to restrict dif-
fusion to instances that will preserve biological soundness of terms. The
final step in the design of our language is aimed at solving this question.

5 C3: moving molecules

5.1 Terms

Let specBS be a family of B and S indexed terminal symbols (distinct from
all others) with B � B and S � S. The grammar generating terms of C3

extends the previous one the following way:

T, S ::= . . . (local terms)
G,H ::= T | specBS (T ) | (G,H) (global terms)
P,Q ::= G | (P ⌃ Q) | . . . (wide terms)

where specBS (T ) denotes the fact that term T describes a partial species,
i.e is either a connected component or a pattern that should be placed
in a context that will make it connected. The sets B and S are essentially
for convenience since they can be both retrieved from T as they contain
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(perhaps humans with phones) may be somewhere in a building, either in a room or
not. Those in a room have been automatically sensed, and thus have access to the
building’s informatic infrastructure. In this example, independently of their location,
all five agents A are engaged in a conference call, represented by the long horizontal
link. Other links represent connections of the computer/sensors.

Many reconfigurations are possible. In this example agent ANN has severed her link
to the conference call. Simultaneously BOB has entered a room, and thus been sensed
and linked to the room’s resident sensor/computer. The conference link is identified
by a name x; this allows our system to be a subsystem of a larger system, with more
buildings etc, some of whose agents may be taking part in the same conversation. Thus
states of complex systems are composed from states of simpler ones.

Each particular interaction discipline for bigraphs is called a bigraphical reactive
system (BRS) and is characterised by two components: (1) A signature—a set of so-
called controls indicating the possible types of nodes. In this example the signature is
{A, B, C, R}. (2) A set of reaction rules defining the possible reconfigurations. (These
are not shown for our example, but their effect is illustrated.)

Finally, bigraphs represent the abstract as well as the concrete. For example, there
is a BRS representing the π-caclulus and another representing Mobile Ambients. By
combining the abstract with the concrete we can, for example, describe both the phys-
ical and the informatic activity in a building.

Topics for a project
The following are topics for bigraphical research, that could be mounted in my stay
in Paris, 2006–2007. I hope to engage French —and more generally European— re-
searchers in this work. The main theme is to develop simultaneously the theory and
practical applications of bigraphs. The bigraph model is not canonical —variants and
alternatives can be imagined— but it has at least enough power and flexibility to serve
as a case study for a theory to underpin future systems engineering. In all of this work
I hope to collaborate with the groups led by senior researchers in the Île-de-France:
Palamidessi and Miller at École Polytechnique and INRIA Futurs, Curien and Melliès
at Paris VII, Levy at INRIA Rocquencourt. My previous student James Leifer, who
developed some of the behavioural theory with me, is in Levy’s group. Leifer organ-
ised a 10-hour series of lectures and discussions which I gave in this topic in Paris in
September 2005; it was very well attended and will lead to further collaboration with
the above-mentioned researchers.

Behavioural equivalence and preorder. One wishes to know how agents (simple
or composite) in a BRS may be replaced by others that exhibit identical behaviour,
or possibly richer but compatible behaviour. This entails exact definition of the terms
‘identical’, ‘richer’ and ‘compatible’. Much work has been done on these problems in
existing process calculi, and therefore applies to the BRSs that represent them. But the
space of BRSs is much wider. We wish to see how far the existing behavioural theory
generalises to this space, and to identify any new concepts needed.

Morphisms. Any complex practical system can be modelled at many levels, each
suppressing more or less detail. For sentient buildings, for example, an action such
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There is a lot of work to do, and we are hiring!

Thanks!


