
Modelling logic programming: an LFCS adventure

John Power, University of Bath

I was introduced to logic programming by Leon Sterling in 1988–89, the year
before I came to Edinburgh. That was already informed by LFCS: Leon had done
a PhD in Pure Mathematics in Australia, then joined Alan Bundy’s group in Edin-
burgh, learning logic programming there, before I met him; Alan in turn was closely
associated with LFCS, and in fact was a member of the ESPRIT LF programme
that I joined as Gordon Plotkin’s research assistant within LFCS in 1989.

Upon coming to Edinburgh, my research on logic programming quietly perco-
lated, informed decisively by a multitude of LFCS researchers and visitors. The
bulk of my research on the topic has been joint with Ekaterina Komendantskaya, a
regular visitor to LFCS.

Gordon Plotkin and his research associates and PhD students, such as Bartek
Klin and Daniele Turi, inspired by Robin Milner’s development of CCS, were experts
in coalgebra. Inspired by that, we observed that a propositional logic program gives
rise to, and is essentially equivalent to, a PfPf -coalgebra, where Pf is the endofunctor
on Set that sends a set X to the set of finite subsets of X. Specifically, given a logic
program P , any atomic formula is the head of finitely many clauses in P , and each
such clause contains finitely many atomic formulae in its tail, yielding a coalgebra
structure on the set At of atomic formulae.

A strong feature of their work was the study of the cofree comonad on an endo-
functor. We followed suit, yielding an elegant characterisation of coinductive trees,
a standard construction, albeit under a different name, in logic programming. That
construction has been central to the whole body of our work.

Gordon Plotkin with his LF group, Rod Burstall with his LEGO group, Don
Sannella with his Algebraic Specification group, and Mike Fourman with his cate-
gorical logic group, all contributed to the next idea: in order to extend from propo-
sitional logic programs to arbitrary ones, one attempts to extend from Set to the
presheaf category [Lop , Set], where L is the Lawvere theory freely generated by the
function symbols in the logic program.

In fact, the situation is more complex than that, as the naturality condition of
a map in [Lop , Set] fails. At that point, Tony Hoare, a frequent visitor to LFCS,
in particular to Robin Milner’s group, springs to mind. Tony had modelled data
refinement in terms of “upward simulations” and “downward simulations”. These

1



are exactly lax and oplax natural transformations. Inspired by that, we refined
[Lop , Set] to Lax (Lop ,Poset), resolving the naturality problem.

That allowed us to model a substantial class of logic programs, but not ones
with existential variables, i.e., variables in the tail of a clause that do not appear
in the head. In stepped Peter O’Hearn, another welcome visitor to LFCS, this time
primarily to Plotkin’s group. That problem, albeit in a somewhat different context,
was central to Peter’s modelling of local state. So, inspired by his account of local
state, we further refined our constructions, allowing us to model existential variables.

That reaches the present day. For the future, we seek to model the recursion of
logic programming by taking coinductive trees and studying the graphs generated by
identifying nodes with the same labels: that yet again is inspired by LFCS practice,
that technique having been used by Colin Stirling in his use of the tableau method
in studying CCS.

I should mention that, in the noble tradition of LFCS, this is not purely theoreti-
cal research. Rather it has inspired a variant of SLD-resolution, one built upon max-
imal use of pattern-matching before using arbitrary unification. This typically adds
efficiency and is currently being developed by Komendantskaya’s group at Heriot-
Watt University, with particular application to functional programming.

2


