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Outline 
  What is MapReduce? 

  The MapReduce programming model 

  Application: inverted indexing 
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Typical Problem 
  Iterate over a large number of records 

  Extract something of interest from each 

  Shuffle and sort intermediate results 

  Aggregate intermediate results 

  Generate final output 

Key idea: functional abstraction for these two operations 
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MapReduce 
  Programmers specify two functions: 

map (k, v) → <k’, v’>* 
reduce (k’, v’) → <k’, v’>* 
  All values with the same key are reduced together 

  Usually, programmers also specify: 
partition (k’, number of partitions ) → partition for k’ 
  Often a simple hash of the key, e.g. hash(k’) mod n 
  Allows reduce operations for different keys in parallel 
combine(k’,v’) → <k’,v’> 
  “Mini-reducers” that run in memory after the map phase 
  Optimizes to reduce network traffic & disk writes 

  Implementations: 
  Google has a proprietary implementation in C++ 
  Hadoop is an open source implementation in Java 
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Shuffle and Sort: aggregate values by keys 
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MapReduce Runtime 
  Handles scheduling 

  Assigns workers to map and reduce tasks 

  Handles “data distribution” 
  Moves the process to the data 

  Handles synchronization 
  Gathers, sorts, and shuffles intermediate data 

  Handles faults 
  Detects worker failures and restarts 

  Everything happens on top of a distributed FS (later) 



“Hello World”: Word Count 

Map(String input_key, String input_value): 
     // input_key: document name 
     // input_value: document contents 
     for each word w in input_values: 
          EmitIntermediate(w, "1"); 

Reduce(String key, Iterator intermediate_values): 
     // key: a word, same for input and output 
     // intermediate_values: a list of counts 
     int result = 0; 
     for each v in intermediate_values: 
          result += ParseInt(v); 
          Emit(AsString(result)); 
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Redrawn from Dean and Ghemawat (OSDI 2004) 



How do we get data to the workers? 

Compute Nodes 

NAS 

SAN 

What’s the problem here? 



Distributed File System 
  Don’t move data to workers… Move workers to the data! 

  Store data on the local disks for nodes in the cluster 
  Start up the workers on the node that has the data local 

  Why? 
  Not enough RAM to hold all the data in memory 
  Disk access is slow, disk throughput is good 

  A distributed file system is the answer 
  GFS (Google File System) 
  HDFS for Hadoop (= GFS clone) 



GFS: Assumptions 
  Commodity hardware over “exotic” hardware 

  High component failure rates 
  Inexpensive commodity components fail all the time 

  “Modest” number of HUGE files 

  Files are write-once, mostly appended to 
  Perhaps concurrently 

  Large streaming reads over random access 

  High sustained throughput over low latency 

GFS slides adapted from material by Dean et al. 



GFS: Design Decisions 
  Files stored as chunks 

  Fixed size (64MB) 

  Reliability through replication 
  Each chunk replicated across 3+ chunkservers 

  Single master to coordinate access, keep metadata 
  Simple centralized management 

  No data caching 
  Little benefit due to large data sets, streaming reads 

  Simplify the API 
  Push some of the issues onto the client 



Redrawn from Ghemawat et al. (SOSP 2003) 
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Master’s Responsibilities 
  Metadata storage 

  Namespace management/locking 

  Periodic communication with chunkservers 

  Chunk creation, replication, rebalancing 

  Garbage collection 



Questions? 



MapReduce Application: 
Inverted Indexing 



Text Retrieval: Topics 
  Introduction to information retrieval (IR) 

  Inverted indexing with MapReduce 



Architecture of IR Systems 
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How do we represent text? 
  “Bag of words” 

  Treat all the words in a document as index terms for that document 
  Assign a weight to each term based on “importance” 
  Disregard order, structure, meaning, etc. of the words 
  Simple, yet effective! 

  Assumptions 
  Term occurrence is independent 
  Document relevance is independent 
  “Words” are well-defined 



Sample Document 
McDonald's slims down spuds 
Fast-food chain to reduce certain types of 
fat in its french fries with new cooking oil. 
NEW YORK (CNN/Money) - McDonald's Corp. is 
cutting the amount of "bad" fat in its french fries 
nearly in half, the fast-food chain said Tuesday as 
it moves to make all its fried menu items 
healthier. 
But does that mean the popular shoestring fries 
won't taste the same? The company says no. "It's 
a win-win for our customers because they are 
getting the same great french-fry taste along with 
an even healthier nutrition profile," said Mike 
Roberts, president of McDonald's USA. 
But others are not so sure. McDonald's will not 
specifically discuss the kind of oil it plans to use, 
but at least one nutrition expert says playing with 
the formula could mean a different taste. 
Shares of Oak Brook, Ill.-based McDonald's 
(MCD: down $0.54 to $23.22, Research, 
Estimates) were lower Tuesday afternoon. It was 
unclear Tuesday whether competitors Burger 
King and Wendy's International (WEN: down 
$0.80 to $34.91, Research, Estimates) would 
follow suit. Neither company could immediately 
be reached for comment. 
… 

16 × said  
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“Bag of Words” 



Representing Documents 
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Inverted Index 
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Boolean Retrieval 
  To execute a Boolean query: 

  Build query syntax tree 

  For each clause, look up postings 

  Traverse postings and apply Boolean operator 

  Efficiency analysis 
  Postings traversal is linear (assuming sorted postings) 
  Start with shortest posting first  

( fox or dog ) and quick 

fox dog 

OR quick 

AND 

fox 
dog 3 5 

3 5 7 

fox 
dog 3 5 

3 5 7 
OR = union 3 5 7 



TF.IDF Term Weighting 

weight assigned to term i in document j 

number of occurrence of term i in document j 

number of documents in entire collection 

number of documents with term i 



TF.IDF Example 
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MapReduce it? 
  The indexing problem 

  Must be relatively fast, but need not be real time 
  For Web, incremental updates are important 
  Crawling is a challenge itself! 

  The retrieval problem 
  Must have sub-second response 
  For Web, only need relatively few results 



Indexing: Performance Analysis 
  Fundamentally, a large sorting problem 

  Terms usually fit in memory 
  Postings usually don’t 

  How is it done on a single machine? 

  How large is the inverted index? 
  Size of vocabulary 
  Size of postings 



MapReduce: Index Construction 
  Map over all documents 

  Emit term as key, (docid, tf) as value 
  Emit other information as necessary (e.g., term position) 

  Reduce 
  Trivial: each value represents a posting! 
  Might want to sort the postings (e.g., by docid or tf) 

  MapReduce does all the heavy lifting! 



Query Execution 
  MapReduce is meant for large-data batch processing 

  Not suitable for lots of real time operations requiring low latency 

  The solution: “the secret sauce” 
  Most likely involves document partitioning 
  Lots of system engineering: e.g., caching, load balancing, etc. 



Questions? 



MapReduce Algorithm Design 

(Chapter 3) 



Managing Dependencies 
  Remember: Mappers run in isolation 

  You have no idea in what order the mappers run 
  You have no idea on what node the mappers run 
  You have no idea when each mapper finishes 

  Tools for synchronization: 
  Ability to hold state in reducer across multiple key-value pairs 
  Sorting function for keys 
  Partitioner 
  Cleverly-constructed data structures 



Motivating Example 
  Term co-occurrence matrix for a text collection 

  M = N x N matrix (N = vocabulary size) 
  Mij: number of times i and j co-occur in some context  

(for concreteness, let’s say context = sentence) 

  Why? 
  Distributional profiles as a way of measuring semantic distance 
  Semantic distance useful for many language processing tasks 

“You shall know a word by the company it keeps” (Firth, 1957) 

e.g., Mohammad and Hirst (EMNLP, 2006) 



MapReduce: Large Counting Problems 
  Term co-occurrence matrix for a text collection 

= specific instance of a large counting problem 
  A large event space (number of terms) 
  A large number of events (the collection itself) 
  Goal: keep track of interesting statistics about the events 

  Basic approach 
  Mappers generate partial counts 
  Reducers aggregate partial counts 

How do we aggregate partial counts efficiently? 



First Try: “Pairs” 
  Each mapper takes a sentence: 

  Generate all co-occurring term pairs 
  For all pairs, emit (a, b) → count 

  Reducers sums up counts associated with these pairs 

  Use combiners! 

Note: in these slides, we donate a key-value pair as k → v 



“Pairs” Analysis 
  Advantages 

  Easy to implement, easy to understand 

  Disadvantages 
  Lots of pairs to sort and shuffle around (upper bound?) 



Another Try: “Stripes” 
  Idea: group together pairs into an associative array 

  Each mapper takes a sentence: 
  Generate all co-occurring term pairs 
  For each term, emit a → { b: countb, c: countc, d: countd … } 

  Reducers perform element-wise sum of associative arrays 

(a, b) → 1  
(a, c) → 2  
(a, d) → 5  
(a, e) → 3  
(a, f) → 2  

a → { b: 1, c: 2, d: 5, e: 3, f: 2 } 

a → { b: 1,         d: 5, e: 3 } 
a → { b: 1, c: 2, d: 2,         f: 2 } 
a → { b: 2, c: 2, d: 7, e: 3, f: 2 } 

+ 



“Stripes” Analysis 
  Advantages 

  Far less sorting and shuffling of key-value pairs 
  Can make better use of combiners 

  Disadvantages 
  More difficult to implement 
  Underlying object is more heavyweight 
  Fundamental limitation in terms of size of event space 



Cluster size: 38 cores 
Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3), 
which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed) 



Relative frequency estimates 
  How do we compute relative frequencies from counts? 

  Why do we want to do this? 

  How do we do this with MapReduce? 



P(B|A): “Pairs”  

  For this to work: 
  Must emit extra (a, *) for every bn in mapper 
  Must make sure all a’s get sent to same reducer (use partitioner) 
  Must make sure (a, *) comes first (define sort order) 
  Must hold state in reducer across different key-value pairs 

(a, b1) → 3  
(a, b2) → 12  
(a, b3) → 7 
(a, b4) → 1  
… 

(a, *) → 32  

(a, b1) → 3 / 32  
(a, b2) → 12 / 32 
(a, b3) → 7 / 32 
(a, b4) → 1 / 32 
… 

Reducer holds this value in memory 



P(B|A): “Stripes”  

  Easy! 
  One pass to compute (a, *) 
  Another pass to directly compute f(B|A) 

a →  {b1:3, b2 :12, b3 :7, b4 :1, … } 



Synchronization in Hadoop 
  Approach 1: turn synchronization into an ordering problem 

  Sort keys into correct order of computation 
  Partition key space so that each reducer gets the appropriate set 

of partial results 
  Hold state in reducer across multiple key-value pairs to perform 

computation 
  Illustrated by the “pairs” approach 

  Approach 2: construct data structures that “bring the 
pieces together” 
  Each reducer receives all the data it needs to complete the 

computation 
  Illustrated by the “stripes” approach 



Issues and Tradeoffs 
  Number of key-value pairs 

  Object creation overhead 
  Time for sorting and shuffling pairs across the network 
  In Hadoop, every object emitted from a mapper is written to disk 

  Size of each key-value pair 
  De/serialization overhead 

  Combiners make a big difference! 
  RAM vs. disk and network 
  Arrange data to maximize opportunities to aggregate partial results 



Questions? 



Thank you! 


