
Running Hadoop Jobs at Edinburgh

Miles Osborne

July 17, 2011

Abstract

These notes explain how to run Hadoop jobs on the Edinburgh Hadoop
cluster. They do not explain how Map Reduce or Unix works.

1 Getting ready

1.1 Paths etc

Edinburgh has a local version of Linux called DICE. There are minor differences,
but it is very similar to Ubuntu etc. You will need to renew your filesystem
credentials when you login. Do this (ie enter your password):

[burbank]miles: renc
Password:

You also need to do something similar for printing:

[burbank]miles: kinit
Password for miles@INF.ED.AC.UK:
[burbank]miles:

Finally, you should setup your path so that you can see the Hadoop binary.
DICE uses a different version of bash:

http://www.inf.ed.ac.uk/systems/support/FAQ/#J0

so you will need to change .benv instead of ..bashrc: Using your favourite
editor (I prefer emacs), at the top level, edit .benv and add the following line:

PATH=$PATH:/opt/hadoop/hadoop-0.20.2/bin/

1.2 Logging into Hadoop

Hadoop has a special machine where you launch jobs. You need to login to it
before you can do anything with Hadoop: The main one is called namenode:

ssh namenode

There are backup machines called hackathon1 . . . hackathin19 which you can
use if the main machine is too slow. Note these are also slaves.

1

2 DFS

Hadoop consists of two major parts: a distributed file system (DFS) and a
method for running jobs. DFS stores files over the network and files are repli-
cated in case of failure. It is very important to note that DFS is not the same
as the normal Unix filesystem: you cannot use ls etc to use it. Instead, you use
special Hadoop commands.

Login to a namenode and run the following commands:

hadoop dfs -ls /user/miles

This lists the files for user miles. You should see this:

Found 3 items
drwxr-xr-x - miles miles 0 2011-02-22 19:20 /user/miles/clueweb
drwxr-xr-x - miles miles 0 2010-12-02 17:55 /user/miles/data
drwxr-xr-x - miles miles 0 2011-07-13 11:28 /user/miles/twitter

List the files in your area. (It should be empty):

hadoop dfs -ls

To create a directory on Hadoop, run this command:

hadoop dfs -mkdir test

Verify that it is there using the Hadoop version of ls.
To upload data from Unix to DFS, you use the put command. First create

a file (on Unix) as follows:

ls / > temp.txt

Now, upload it to DFS:

hadoop dfs -put temp.txt test/temp.txt

Verify that it is there using the DFS ls. To download data from DFS into Unix:

hadoop dfs -cat test/temp.txt > temp.txt

This should be the same as the version on Unix.
Hadoop also supports wildcards, so you can do this:

hadoop dfs -cat test/t*

To rename a file:

hadoop dfs -mv test/temp.txt test/fred.txt

Files can be deleted using rm. You can delete entire directories using rmr:

hadoop dfs -rmr test

2

3 Running Map Reduce Jobs

We will be using the streaming interface to Hadoop. This allows you to run
mappers and reducers written in any programming language. Here we will use
a mapper and a reducer written in C++.

Download all of the scripts stored in DFS in /user/miles/scripts and store
them in Unix. The file m-compute-ngram-counts-batch extracts ngrams
(defaults to trigrams) from a file of raw sentences. This is a mapper. The file
r-compute-ngram-counts is a reducer. It collects together the output of the
mapper and produces a list of counted ngrams. All data is stored in DFS.The
two files runStreaming.sh and runStreamingCompInCompOut.sh are
front-ends to the streaming interface. (The file runStreaming.sh assumes data
is not compressed in DFS and runStreamingCompInCompOut.sh assumes
that data is compressed.)

runStreaming.sh takes five arguments:

1. The name of the mapper: (a Unix path)

2. The name of the reducer (a Unix path)

3. The input directory (a DFS directory)

4. The output directory (a DFS directory)

5. The job name.

Here is an example MR job and we will count trigrams from a file data.
Run the following commands:

chmod +x runStreaming.sh
./runStreaming.sh m-compute-ngram-counts-batch r-compute-ngram-counts

\ /user/miles/data/small.txt temp2 ngram

Ignore the warnings about depreciated flags. Once this is done you can
inspect the results:

hadoop dfs -ls temp2
Found 11 items
drwxr-xr-x - miles miles 0 2011-07-16 16:51 /user/miles/temp2/_logs
-rw-r--r-- 4 miles miles 441054 2011-07-16 16:51 /user/miles/temp2/part-00000
-rw-r--r-- 4 miles miles 438993 2011-07-16 16:51 /user/miles/temp2/part-00001

...

Hadoop stores the results in shards (for example part-00000). Have a look at
it.

When developing and debugging MR jobs it can be useful to do this under
Unix first. To simulate Hadoop in Unix, do the following:

3

chmod +x m-compute-ngram-counts-batch
ls / | ./m-compute-ngram-counts-batch > results1

Look at the results file. Now run it through the reducer:

chmod +x r-compute-ngram-counts
sort +0 -1 result1 | ./r-compute-ngram-counts > results2

Again, look at the new results. This is not that exciting as there are no repeated
grams and so all of the counts are one.

Tracking Jobs

You can track the progress of your job using a web front end:

http://hcrc1425n32.inf.ed.ac.uk:50030/jobtracker.jsp

Jobs can be listed and killed as follows:

hcrc1425n30]miles: hadoop job -list
1 jobs currently running
JobId State StartTime UserName Priority SchedulingInfo
job_201107131350_0707 1 1310830768287 s1053654 NORMAL NA

hcrc1425n30]miles: hadoop job -Dmapred.job.tracker=129.215.18.32:8021 -kill job_20 ...

(You might wish to alias the killing command in your .benv file)

4 Your own Hadoop Job

Here you will write a program to do work counting. We will use the Unix wc
command to do most of the work.

• Count the number of words in the large file:

hadoop dfs -cat /user/miles/data/large.txt | wc

• Now, run wc as a mapper and use cat as a reducer. Note you need to give
the actual Unix paths to wc and cat (use which wc etc) when running
runStreaming.sh. Here, the reducer simply copies the output.

• Inspect the output. Any idea why some of the shards are empty? For the
shards that are not empty, what does each line mean?

Write a reducer that sums together the input it receives and produces for each
shard a single line of output. For example, the input shard:

1 2 3
4 5 6

Would instead produce a shard with one line:

5 7 9

The results are on DFS and Unix. Can you produce a single output (in Unix)?

4

