1. Bisimulation everywhere

Coalgebraic bisimulation

Jan Rutten

CWI & Radboud University

Motivation

- Robin Milner: bisimulation and coinduction.
- Coalgebra, the mathematics of bisimulation.
- Behavioural theory of systems.
- CMCS, CALCO; also presence in main conferences.
- · Joint work with many persons.

Overview

- 1. Bisimulation everywhere
- 2. The power of coinduction
- 3. More bisimulations, still

1. Bisimulation everywhere

1. Bisimulation everywhere

•0000000

An *F*-bisimulation, for a functor $F: C \rightarrow C$:

$$X \xleftarrow{\pi_1} R \xrightarrow{\pi_2} Y$$

$$\alpha \downarrow \qquad \qquad \downarrow \beta$$

$$F(X) \underset{F(\pi_1)}{\longleftarrow} F(R) \xrightarrow{F(\pi_2)} F(Y)$$

- As many types of bisimulation as there are functors . . .
- Well-behaved functors: universal coalgebra.
- Bisimulation/Coalgebra = Congruence/Algebra

An *F*-bisimulation, for a functor $F: C \rightarrow C$:

$$X \leftarrow \begin{array}{c} X \leftarrow \begin{array}{c} \pi_1 \\ \alpha \\ \downarrow \end{array} & \begin{array}{c} R \longrightarrow Y \\ \downarrow \gamma \\ \downarrow \gamma \end{array} & \begin{array}{c} \beta \\ \downarrow \beta \end{array} \\ F(X) \xleftarrow{F(\pi_1)} F(R) \xrightarrow{F(\pi_2)} F(Y) \end{array}$$

- As many types of bisimulation as there are functors . . .
- Well-behaved functors: universal coalgebra.
- Bisimulation/Coalgebra = Congruence/Algebra

An *F*-bisimulation, for a functor $F: C \rightarrow C$:

$$X \leftarrow \begin{array}{c} X \leftarrow \begin{array}{c} \pi_1 \\ \alpha \\ \downarrow \end{array} & \begin{array}{c} R \longrightarrow Y \\ \downarrow \gamma \\ \downarrow \end{array} & \begin{array}{c} \beta \\ \downarrow \gamma \end{array} & \begin{array}{c} \beta \\ \downarrow R \end{array} \\ F(X) \xrightarrow{F(\pi_1)} F(R) \xrightarrow{F(\pi_2)} F(Y) \end{array}$$

- As many types of bisimulation as there are functors . . .
- Well-behaved functors: universal coalgebra.
- Bisimulation/Coalgebra = Congruence/Algebra

An F-bisimulation, for a functor $F: C \to C$:

1. Bisimulation everywhere

0000000

$$X \leftarrow \begin{array}{c} X \leftarrow \begin{array}{c} \pi_1 \\ \alpha \\ \downarrow \end{array} & \begin{array}{c} R \longrightarrow Y \\ \downarrow \gamma \\ \downarrow \end{array} & \begin{array}{c} \beta \\ \downarrow \gamma \end{array} & \begin{array}{c} \beta \\ \downarrow R \end{array} \\ F(X) \xrightarrow{F(\pi_1)} F(R) \xrightarrow{F(\pi_2)} F(Y) \end{array}$$

- As many types of bisimulation as there are functors . . .
- Well-behaved functors: universal coalgebra.
- Bisimulation/Coalgebra = Congruence/Algebra

1. Bisimulation everywhere

0000000

Example: universes of sets

- $R \subseteq X \times X$ is a \mathcal{P} -bisimulation if for all $(x, y) \in R$:
- (1) $\forall x' \in x \Rightarrow \exists y' \in y \ s.t. \ (x', y') \in R$
- C.f. strong bisimulation on transition systems.

0000000

Example: universes of sets

- $R \subset X \times X$ is a \mathcal{P} -bisimulation if for all $(x, y) \in R$:
- (1) $\forall x' \in x \Rightarrow \exists y' \in y \ s.t. \ (x', y') \in R$ and
- $(2) \ \forall \ y' \in y \ \Rightarrow \ \exists \ x' \in x \ s.t. \ (x', y') \in R$
- C.f. strong bisimulation on transition systems.

Example: universes of sets

- $R \subseteq X \times X$ is a \mathcal{P} -bisimulation if for all $(x, y) \in R$:
- (1) $\forall x' \in x \Rightarrow \exists y' \in y \ s.t. \ (x', y') \in R$ and
- (2) $\forall y' \in y \Rightarrow \exists x' \in x \ s.t. \ (x', y') \in R$
- C.f. strong bisimulation on transition systems.

• E.g., for
$$x = \{x\}$$
 and $y = \{y\}$,
$$R = \{(x, y)\}$$
 is a bisimulation relati

• E.g., for
$$x = \{x\}$$
 and $y = \{x, y\}$,
$$R = \{(x, y), (x, x)\} \text{ is a bisimulation relation}$$

Strong-extensionality

$$X$$
 α
 \downarrow
 $\mathcal{P}(X)$ write $y \in X$ for $y \in \alpha(X)$

• E.g., for $x = \{x\}$ and $y = \{y\}$, $R = \{(x, y)\}$ is a bisimulation relation

• E.g., for
$$x = \{x\}$$
 and $y = \{x, y\}$,
$$R = \{(x, y), (x, x)\}$$
 is a bisimulation relation

1. Bisimulation everywhere

$$X$$
 α
 \downarrow
 $\mathcal{P}(X)$ write $y \in X$ for $y \in \alpha(X)$

- E.g., for $x = \{x\}$ and $y = \{y\}$, $R = \{(x, y)\}$ is a bisimulation relation
- E.g., for $x = \{x\}$ and $y = \{x, y\}$, $R = \{(x, y), (x, x)\}$ is a bisimulation relation

1. Bisimulation everywhere

$$X$$
 α
 \downarrow
 $\mathcal{P}(X)$ write $y \in X$ for $y \in \alpha(X)$

• E.g., for $x = \{x\}$ and $y = \{y\}$, $R = \{(x, y)\}$ is a bisimulation relation

• E.g., for $x = \{x\}$ and $y = \{x, y\}$, $R = \{(x, y), (x, x)\}$ is a bisimulation relation

Strong-extensionality

1. Bisimulation everywhere

Example: determinisic automata

$$X$$
 (x) is final $\iff o(x) = 1$
 (x) $(x$

• $R \subseteq X \times X$ is a bisimulation if for all $(x, y) \in R$:

$$o(x) = o(y)$$
 and $\forall a \in A$: $(t(x)(a), t(y)(a)) \in F$

Example: determinisic automata

$$X$$
 (o, t) is final $\iff o(x) = 1$
 $2 \times X^A$ $x \xrightarrow{a} y \iff t(x)(a) = y$

• $R \subseteq X \times X$ is a bisimulation if for all $(x, y) \in R$:

$$o(x) = o(y)$$
 and $\forall a \in A$: $(t(x)(a), t(y)(a)) \in R$

$$R = \{(x, y), (x, x), (y, y), (z, z)\}\$$
 is a bisimulation relation

• Note that here bisimilarity is language (trace) equivalence:

$$L(x) = L(y)$$

- . . . which confused the people from CONCUR for a while.
- Cf. ready, failure etc. equivalence [MFPS 2012].

$$R = \{(x, y), (x, x), (y, y), (z, z)\}$$
 is a bisimulation relation

Note that here bisimilarity is language (trace) equivalence:

$$L(x) = L(y)$$

- Cf. ready, failure etc. equivalence [MFPS 2012].

$$R = \{(x, y), (x, x), (y, y), (z, z)\}$$
 is a bisimulation relation

Note that here bisimilarity is language (trace) equivalence:

$$L(x) = L(y)$$

- . . . which confused the people from CONCUR for a while.
- Cf. ready, failure etc. equivalence [MFPS 2012].

$$R = \{(x, y), (x, x), (y, y), (z, z)\}$$
 is a bisimulation relation

• Note that here bisimilarity is language (trace) equivalence:

$$L(x) = L(y)$$

- . . . which confused the people from CONCUR for a while.
- Cf. ready, failure etc. equivalence [MFPS 2012].

For a stream $\sigma = (\sigma(0), \sigma(1), \sigma(2), \ldots) \in \mathbb{N}^{\omega}$,

- initial value: $\sigma(0)$
- derivative: $\sigma' = (\sigma(1), \sigma(2), \sigma(3), \ldots)$

We call $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ a stream bisimulation if

$$\forall (\sigma, \tau) \in R : \sigma(0) = \tau(0) \text{ and } (\sigma', \tau') \in F$$

For a stream $\sigma = (\sigma(0), \sigma(1), \sigma(2), \ldots) \in \mathbb{N}^{\omega}$,

- initial value: $\sigma(0)$
- derivative: $\sigma' = (\sigma(1), \sigma(2), \sigma(3), \ldots)$

$$egin{array}{cccc} \mathbb{N}^{\omega} & & \sigma \ & & & \downarrow \ \mathbb{N} imes \mathbb{N}^{\omega} & & \langle \sigma(\mathbf{0}), \, \sigma'
angle \end{array}$$

We call $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ a stream bisimulation if

$$\forall (\sigma, \tau) \in R : \sigma(0) = \tau(0) \text{ and } (\sigma', \tau') \in R$$

For a stream $\sigma = (\sigma(0), \sigma(1), \sigma(2), \ldots) \in \mathbb{N}^{\omega}$,

• initial value: $\sigma(0)$

1. Bisimulation everywhere

00000000

• derivative: $\sigma' = (\sigma(1), \sigma(2), \sigma(3), \ldots)$

$$egin{array}{cccc} \mathbb{N}^{\omega} & & \sigma \ & & & \downarrow \ \mathbb{N} imes \mathbb{N}^{\omega} & & \langle \sigma(\mathbf{0}), \, \sigma'
angle \end{array}$$

We call $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ a stream bisimulation if

$$\forall (\sigma, \tau) \in R : \sigma(0) = \tau(0) \text{ and } (\sigma', \tau') \in R$$

• We call $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ a stream bisimulation if

$$\forall (\sigma, \tau) \in R : \sigma(0) = \tau(0) \text{ and } (\sigma', \tau') \in R$$

We write

1. Bisimulation everywhere

0000000

$$\sigma \sim \tau \equiv \exists$$
 bisimulation R s.t. $\langle \sigma, \tau \rangle \in R$

Seemingly trivial coinduction proof principle:

$$\sigma \sim \tau \implies \sigma = \tau$$

• We call $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ a stream bisimulation if

$$\forall (\sigma, \tau) \in R : \sigma(0) = \tau(0) \text{ and } (\sigma', \tau') \in R$$

We write

$$\sigma \sim \tau \equiv \exists$$
 bisimulation R s.t. $\langle \sigma, \tau \rangle \in R$

Seemingly trivial coinduction proof principle:

$$\sigma \sim \tau \Rightarrow \sigma = \tau$$

• We call $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ a stream bisimulation if

$$\forall (\sigma, \tau) \in R : \sigma(0) = \tau(0) \text{ and } (\sigma', \tau') \in R$$

We write

1. Bisimulation everywhere

00000000

$$\sigma \sim \tau \equiv \exists$$
 bisimulation R s.t. $\langle \sigma, \tau \rangle \in R$

Seemingly trivial coinduction proof principle:

$$\sigma \sim \tau \implies \sigma = \tau$$

• We call $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ a stream bisimulation if

$$\forall (\sigma, \tau) \in R : \sigma(0) = \tau(0) \text{ and } (\sigma', \tau') \in R$$

We write

$$\sigma \sim \tau \equiv \exists$$
 bisimulation R s.t. $\langle \sigma, \tau \rangle \in R$

Seemingly trivial coinduction proof principle:

$$\sigma \sim \tau \implies \sigma = \tau$$

(the proof of the principle itself is trivial)

2. The power of coinduction

We will illustrate the strength of the coinduction proof

$$\sigma \sim \tau \implies \sigma = \tau$$

But first: defining streams with

2. The power of coinduction

 We will illustrate the strength of the coinduction proof principle:

$$\sigma \sim \tau \implies \sigma = \tau$$

• But first: defining streams with

stream differential equations

2. The power of coinduction

 We will illustrate the strength of the coinduction proof principle:

$$\sigma \sim \tau \implies \sigma = \tau$$

But first: defining streams with

stream differential equations

Stream differential equations

- Recall, for a stream $\sigma = (\sigma(0), \sigma(1), \sigma(2), \ldots) \in \mathbb{N}^{\omega}$,
 - initial value (= head): $\sigma(0)$
 - derivative (= tail): $\sigma' = (\sigma(1), \sigma(2), \sigma(3), \ldots)$
- Examples of stream differential equations:

$$\sigma(0) = 1 \qquad \sigma' = \sigma \qquad (1, 1, 1, \ldots)$$

$$\sigma(0) = 1$$
 $\sigma' = \sigma + \sigma$ $(2^0, 2^1, 2^2, ...)$

$$\sigma(0) = 1$$
 $\sigma' = \sigma \times \sigma$ $(1, 1, 2, 5, 14, 42, ...)$

Existence of unique solutions: by finality!

Stream differential equations

- Recall, for a stream $\sigma = (\sigma(0), \sigma(1), \sigma(2), \ldots) \in \mathbb{N}^{\omega}$,
 - initial value (= head): $\sigma(0)$
 - derivative (= tail): $\sigma' = (\sigma(1), \sigma(2), \sigma(3), \ldots)$
- Examples of stream differential equations:

initial value derivative solution

$$\sigma(0) = 1 \qquad \sigma' = \sigma \qquad (1, 1, 1, \ldots)$$

$$\sigma(0) = 1$$
 $\sigma' = \sigma + \sigma$ $(2^0, 2^1, 2^2, ...)$

$$\sigma(0) = 1$$
 $\sigma' = \sigma \times \sigma$ $(1, 1, 2, 5, 14, 42, ...)$

Existence of unique solutions: by finality!

Stream differential equations

- Recall, for a stream $\sigma = (\sigma(0), \sigma(1), \sigma(2), \ldots) \in \mathbb{N}^{\omega}$,
 - initial value (= head): $\sigma(0)$
 - derivative (= tail): $\sigma' = (\sigma(1), \sigma(2), \sigma(3), \ldots)$
- Examples of stream differential equations:

initial value derivative solution

$$\sigma(0) = 1 \qquad \sigma' = \sigma \qquad (1, 1, 1, \ldots)$$

$$\sigma(0) = 1$$
 $\sigma' = \sigma + \sigma$ $(2^0, 2^1, 2^2, ...)$

$$\sigma(0) = 1$$
 $\sigma' = \sigma \times \sigma$ $(1, 1, 2, 5, 14, 42, ...)$

• Existence of unique solutions: by finality!

A proof by coinduction: Moessner's theorem

- A. Moessner (1951), proof by O. Perron (1951) and I. Paasche (1952).
- Cf. Ralf Hinze: Scans and convolutions a calculational proof of Moessner's theorem (Oxford University, 2010).
- Our proof: by coinduction (Nigui & R., 2011) . . .
- . . . is a student's exercise.
- Cf. the original proof: advanced binomial coefficient manipulation!!

Moessner's theorem (k = 3)

nat	1	2	3	4	5	6	7	8	9	10	11	12
Drop ₃	1	2		4	5		7			10	11	
Σ	1	3	7	12	19	27	37	48				
Drop ₂	1		7		19		37					
Σ	1		27	64								

nat
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 ...

 Drop3
 1
 2
 4
 5
 7
 8
 10
 11
 ...
 ...

$$\Sigma$$
 1
 3
 7
 12
 19
 27
 37
 48
 ...
 ...
 ...
 ...

 Drop2
 1
 7
 19
 37
 ...
 ...
 ...
 ...
 ...
 ...

 Σ
 1
 8
 27
 64
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

```
nat 1 2 3 4 5 6 7 8 9
                               10 11 12 ...
    1 2 4 5
                   7
Drop<sub>3</sub>
                         8
                               10 11 ...
        3 7 12 19 27 37 48 ...
Drop_2 1
              19
                      37
```


1. Bisimulation everywhere

nat
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 ...

 Drop3
 1
 2
 4
 5
 7
 8
 10
 11
 ...

$$\Sigma$$
 1
 3
 7
 12
 19
 27
 37
 48
 ...

 Drop2
 1
 7
 19
 37
 ...

 Σ
 1
 8
 27
 64
 ...


```
nat
      1 2 3 4 5 6 7 8 9
                                       10 11 12 ...
                         7
Drop<sub>3</sub>
                4 5
                                8
                                       10 11 ...
          3 7 12 19 27 37 48 ...
                    19
Drop<sub>2</sub>
                           37
Σ
          8 27 64 ...
```

1³ 2³ 3³ 4³ ...

nat³

$$nat^3 = \Sigma \circ \textit{Drop}_2 \circ \Sigma \circ \textit{Drop}_3(nat)$$

where nat
$$= (1, 2, 3, ...)$$
 satisfies

$$nat(0) = 1$$
 $nat' = nat + ones$

with ones = (1, 1, 1, ...); and

$$\mathsf{nat}^3 = (\mathsf{1}^3, \mathsf{2}^3, \mathsf{3}^3, \ldots) = \mathsf{nat} \odot \mathsf{nat} \odot \mathsf{nat}$$

with

$$(\sigma \odot \tau)(0) = \sigma(0) \cdot \tau(0)$$
 $(\sigma \odot \tau)' = \sigma' \odot \tau$

$$nat^3 = \Sigma \circ \textit{Drop}_2 \circ \Sigma \circ \textit{Drop}_3(nat)$$

where
$$nat = (1, 2, 3, \ldots)$$
 satisfies

$$nat(0) = 1$$
 $nat' = nat + ones$

with ones =
$$(1, 1, 1, ...)$$
; and

$$nat^3 = (1^3, 2^3, 3^3, ...) = nat \odot nat \odot nat$$

with

$$(\sigma \odot \tau)(0) = \sigma(0) \cdot \tau(0)$$
 $(\sigma \odot \tau)' = \sigma' \odot \tau'$

$$nat^3 = \Sigma \circ \textit{Drop}_2 \circ \Sigma \circ \textit{Drop}_3(nat)$$

and where

$$\mathcal{D}_{2}(\sigma) = (\sigma(0), \sigma(0) + \sigma(1), \sigma(0) + \sigma(1) + \sigma(2), ...$$

$$\mathcal{D}_{2}(\sigma) = (\sigma(0), \sigma(2), \sigma(4), ...)$$

$$Drop_3(\sigma) = (\sigma(0), \sigma(1), \sigma(3), \sigma(4), \sigma(6), \sigma(7), \dots)$$

can all be specified by elementary stream diff. equations.

$$nat^3 = \Sigma \circ \textit{Drop}_2 \circ \Sigma \circ \textit{Drop}_3(nat)$$

and where

$$\Sigma(\sigma) = (\sigma(0), \ \sigma(0) + \sigma(1), \ \sigma(0) + \sigma(1) + \sigma(2), \ldots)$$

$$Drop_2(\sigma) = (\sigma(0), \sigma(2), \sigma(4), \ldots)$$

$$Drop_3(\sigma) = (\sigma(0), \sigma(1), \sigma(3), \sigma(4), \sigma(6), \sigma(7), ...)$$

can all be specified by elementary stream diff. equations.

$$nat^3 = \Sigma \circ \textit{Drop}_2 \circ \Sigma \circ \textit{Drop}_3(nat)$$

• We use the *coinduction proof principle*: for all $\sigma, \tau \in \mathbb{N}^{\omega}$,

$$\sigma \sim \tau \implies \sigma = \tau$$

So it suffices to construct a bisimulation R with

$$\langle \mathsf{nat}^3, \ \Sigma \circ \mathit{Drop}_2 \circ \Sigma \circ \mathit{Drop}_3(\ \mathsf{nat}\) \rangle \in \mathsf{R}$$

$$nat^3 = \Sigma \circ \textit{Drop}_2 \circ \Sigma \circ \textit{Drop}_3(nat)$$

• We use the *coinduction proof principle*: for all $\sigma, \tau \in \mathbb{N}^{\omega}$,

$$\sigma \sim \tau \implies \sigma = \tau$$

So it suffices to construct a bisimulation R with

$$\langle \mathsf{nat}^3, \ \Sigma \circ \mathit{Drop}_2 \circ \Sigma \circ \mathit{Drop}_3(\ \mathsf{nat}\) \rangle \ \in \mathit{F}$$

$$nat^3 = \Sigma \circ \textit{Drop}_2 \circ \Sigma \circ \textit{Drop}_3(nat)$$

• We use the *coinduction proof principle*: for all $\sigma, \tau \in \mathbb{N}^{\omega}$,

$$\sigma \sim \tau \implies \sigma = \tau$$

So it suffices to construct a bisimulation R with

$$\langle \mathsf{nat}^3, \ \Sigma \circ \mathit{Drop}_2 \circ \Sigma \circ \mathit{Drop}_3(\ \mathsf{nat}\) \rangle \in R$$

$$nat^3 = \Sigma \circ \textit{Drop}_2 \circ \Sigma \circ \textit{Drop}_3(nat)$$

• We use the *coinduction proof principle*: for all $\sigma, \tau \in \mathbb{N}^{\omega}$,

$$\sigma \sim \tau \implies \sigma = \tau$$

So it suffices to construct a bisimulation R with

$$\langle \mathsf{nat}^3, \ \Sigma \circ \mathit{Drop}_2 \circ \Sigma \circ \mathit{Drop}_3(\ \mathsf{nat}\) \rangle \in R$$

$$nat^3 = \Sigma \circ \textit{Drop}_2 \circ \Sigma \circ \textit{Drop}_3(nat)$$

Proof: We define R as the smallest set such that

(i)
$$\langle \mathsf{nat}^3, \ \Sigma \circ \mathit{Drop}_2 \circ \Sigma \circ \mathit{Drop}_3(\ \mathsf{nat} \) \rangle \in R$$

(ii)
$$\langle \operatorname{nat} \odot (\operatorname{nat} + \operatorname{ones})^2, \ \Sigma \circ \mathit{Drop}_2^0 \circ \Sigma \circ \mathit{Drop}_3^1(\operatorname{nat}) \rangle \in \mathit{F}$$

(iii) if
$$\langle \sigma_1, \sigma_2 \rangle \in R$$
 and $\langle \tau_1, \tau_2 \rangle \in R$ then $\langle \sigma_1 + \tau_1, \sigma_2 + \tau_2 \rangle \in R$

(iv)
$$\langle \sigma, \sigma \rangle \in R$$
 (all σ)

Then: R is a bisimulation relation

$$nat^3 = \Sigma \circ \textit{Drop}_2 \circ \Sigma \circ \textit{Drop}_3(nat)$$

Proof. We define R as the smallest set such that

- (i) $\langle \text{nat}^3, \ \Sigma \circ \textit{Drop}_2 \circ \Sigma \circ \textit{Drop}_3(\text{nat}) \rangle \in R$

$$nat^3 = \Sigma \circ \textit{Drop}_2 \circ \Sigma \circ \textit{Drop}_3(nat)$$

Proof. We define R as the smallest set such that

(i)
$$\langle \mathsf{nat}^3, \ \Sigma \circ \mathit{Drop}_2 \circ \Sigma \circ \mathit{Drop}_3(\ \mathsf{nat}\) \rangle \in R$$

$$\text{(ii)} \ \langle \, \text{nat} \odot (\text{nat} + \text{ones})^2 \, , \ \Sigma \circ \textit{Drop}_2^0 \, \circ \, \Sigma \circ \textit{Drop}_3^1(\, \text{nat} \,) \, \rangle \ \in \textit{R}$$

(iii) if
$$\langle \sigma_1, \sigma_2 \rangle \in R$$
 and $\langle \tau_1, \tau_2 \rangle \in R$ then $\langle \sigma_1 + \tau_1, \sigma_2 + \tau_2 \rangle \in R$

(iv)
$$\langle \sigma, \sigma \rangle \in R$$
 (all σ)

$$\mathsf{nat}^3 = \ \Sigma \ \circ \ \textit{Drop}_2 \ \circ \ \Sigma \ \circ \ \textit{Drop}_3(\ \mathsf{nat}\)$$

Proof. We define R as the smallest set such that

(i)
$$\langle \mathsf{nat}^3, \ \Sigma \circ \mathit{Drop}_2 \circ \Sigma \circ \mathit{Drop}_3(\ \mathsf{nat}\) \rangle \in R$$

(ii)
$$\langle \operatorname{nat} \odot (\operatorname{nat} + \operatorname{ones})^2, \ \Sigma \circ \mathit{Drop}_2^0 \circ \Sigma \circ \mathit{Drop}_3^1(\operatorname{nat}) \rangle \in R$$

(iii) if
$$\langle \sigma_1, \sigma_2 \rangle \in R$$
 and $\langle \tau_1, \tau_2 \rangle \in R$ then $\langle \sigma_1 + \tau_1, \sigma_2 + \tau_2 \rangle \in R$

(iv)
$$\langle \sigma, \sigma \rangle \in R$$
 (all σ)

$$nat^3 = \Sigma \circ \textit{Drop}_2 \circ \Sigma \circ \textit{Drop}_3(nat)$$

Proof. We define R as the smallest set such that

(i)
$$\langle \mathsf{nat}^3, \ \Sigma \circ \mathit{Drop}_2 \circ \Sigma \circ \mathit{Drop}_3(\ \mathsf{nat}\) \rangle \in R$$

$$\text{(ii)} \ \langle \, \mathsf{nat} \odot (\mathsf{nat} + \mathsf{ones})^2 \, , \ \Sigma \circ \mathit{Drop}_2^0 \, \circ \, \Sigma \circ \mathit{Drop}_3^1(\, \mathsf{nat} \,) \, \rangle \ \in \mathit{R}$$

(iii) if
$$\langle \sigma_1, \sigma_2 \rangle \in R$$
 and $\langle \tau_1, \tau_2 \rangle \in R$ then $\langle \sigma_1 + \tau_1, \sigma_2 + \tau_2 \rangle \in R$

(iv)
$$\langle \sigma, \sigma \rangle \in R$$
 (all σ)

Then: R is a bisimulation relation.

- Every functor F has a notion of F-bisimulation . . .
- . . . and *F*-coinduction definition and proof principles.
- Next: different notions of bisimulation for single F.
- Again, we use streams as an example.
- Cf. Conway, R., Escardo & Pavlovic, Rosu, Kupke & R.

- Every functor F has a notion of F-bisimulation . . .
- . . . and F-coinduction definition and proof principles.
- Next: different notions of bisimulation for single F.
- Again, we use streams as an example.
- Cf. Conway, R., Escardo & Pavlovic, Rosu, Kupke & R.

1. Bisimulation everywhere

- Every functor F has a notion of F-bisimulation . . .
- . . . and F-coinduction definition and proof principles.
- Next: different notions of bisimulation for single F.
- Again, we use streams as an example.
- Cf. Conway, R., Escardo & Pavlovic, Rosu, Kupke & R.

1. Bisimulation everywhere

- Every functor F has a notion of F-bisimulation . . .
- . . . and *F*-coinduction definition and proof principles.
- Next: different notions of bisimulation for single F.
- Again, we use streams as an example.
- Cf. Conway, R., Escardo & Pavlovic, Rosu, Kupke & R.

•
$$\sigma' = (\sigma(1), \sigma(2), \sigma(3), ...)$$

•
$$\Delta \sigma = (\sigma(1) - \sigma(0), \ \sigma(2) - \sigma(1), \ \sigma(3) - \sigma(2), \dots$$

•
$$\frac{d\sigma}{dX} = (1 \cdot \sigma(1), 2 \cdot \sigma(2), 3 \cdot \sigma(3), \ldots)$$

•
$$\sigma' = (\sigma(1), \sigma(2), \sigma(3), \ldots)$$

•
$$\Delta \sigma = (\sigma(1) - \sigma(0), \ \sigma(2) - \sigma(1), \ \sigma(3) - \sigma(2), \dots$$

•
$$\frac{d\sigma}{dX} = (1 \cdot \sigma(1), 2 \cdot \sigma(2), 3 \cdot \sigma(3), \ldots)$$

- $\sigma' = (\sigma(1), \sigma(2), \sigma(3), \ldots)$
- $\Delta \sigma = (\sigma(1) \sigma(0), \ \sigma(2) \sigma(1), \ \sigma(3) \sigma(2), \ldots)$
- $\frac{d\sigma}{dY} = (1 \cdot \sigma(1), 2 \cdot \sigma(2), 3 \cdot \sigma(3), \ldots)$

•
$$\sigma' = (\sigma(1), \sigma(2), \sigma(3), \ldots)$$

•
$$\Delta \sigma = (\sigma(1) - \sigma(0), \ \sigma(2) - \sigma(1), \ \sigma(3) - \sigma(2), \ldots)$$

•
$$\frac{d\sigma}{dX} = (1 \cdot \sigma(1), 2 \cdot \sigma(2), 3 \cdot \sigma(3), \ldots)$$

Non-standard stream calculus

$$\sigma' = (\sigma(1), \sigma(2), \sigma(3), \ldots)$$

$$\Delta \sigma = (\sigma(1) - \sigma(0), \ \sigma(2) - \sigma(1), \ \sigma(3) - \sigma(2), \ldots)$$

$$\frac{d\sigma}{dX} = (1 \cdot \sigma(1), \ 2 \cdot \sigma(2), \ 3 \cdot \sigma(3), \ldots)$$

Non-standard stream differential equations:

$$\sigma(0) = 1 \qquad \sigma' = \sigma \qquad (1, 1, 1, \ldots)$$

$$\sigma(0) = 1 \qquad \Delta \sigma = \sigma \qquad (2^0, 2^1, 2^2, \ldots)$$

$$\sigma(0) = 1 \qquad \frac{d\sigma}{dN} = \sigma \qquad (\frac{1}{2^0}, \frac{1}{4^0}, \frac{1}{2^0}, \frac{1}{4^0}, \ldots)$$

• Existence of unique solutions: again by finality (3 versions)!

Non-standard stream calculus

$$\sigma' = (\sigma(1), \sigma(2), \sigma(3), \ldots)$$

$$\Delta \sigma = (\sigma(1) - \sigma(0), \ \sigma(2) - \sigma(1), \ \sigma(3) - \sigma(2), \ldots)$$

$$\frac{d\sigma}{dX} = (1 \cdot \sigma(1), \ 2 \cdot \sigma(2), \ 3 \cdot \sigma(3), \ldots)$$

Non-standard stream differential equations:

initial value derivative solution

$$\sigma(0) = 1$$
 $\sigma' = \sigma$ $(1, 1, 1, ...)$ $\sigma(0) = 1$ $\Delta \sigma = \sigma$ $(2^{0}, 2^{1}, 2^{2}, ...)$ $\sigma(0) = 1$ $\frac{d\sigma}{dX} = \sigma$ $(\frac{1}{0!}, \frac{1}{1!}, \frac{1}{2!}, \frac{1}{3!}, ...)$

Non-standard stream calculus

$$\sigma' = (\sigma(1), \sigma(2), \sigma(3), \ldots)$$

$$\Delta \sigma = (\sigma(1) - \sigma(0), \ \sigma(2) - \sigma(1), \ \sigma(3) - \sigma(2), \ldots)$$

$$\frac{d\sigma}{dX} = (1 \cdot \sigma(1), \ 2 \cdot \sigma(2), \ 3 \cdot \sigma(3), \ldots)$$

Non-standard stream differential equations:

initial value derivative solution

$$\sigma(0) = 1$$
 $\sigma' = \sigma$ $(1, 1, 1, ...)$ $\sigma(0) = 1$ $\Delta \sigma = \sigma$ $(2^{0}, 2^{1}, 2^{2}, ...)$ $\sigma(0) = 1$ $\frac{d\sigma}{dX} = \sigma$ $(\frac{1}{0!}, \frac{1}{1!}, \frac{1}{2!}, \frac{1}{3!}, ...)$

Existence of unique solutions: again by finality (3 versions)!

Δ-bisimulation

• $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ is a Δ -bisimulation if

$$\forall (\sigma, \tau) \in R : \sigma(0) = \tau(0) \text{ and } (\Delta \sigma, \Delta \tau) \in R$$

We write

$$\sigma \sim_{\Delta} \tau \equiv \exists \Delta$$
-bisimulation R s.t. $\langle \sigma, \tau \rangle \in R$

△-coinduction proof principle:

$$\sigma \sim_{\Lambda} \tau \Rightarrow \sigma = \tau$$

Δ-bisimulation

• $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ is a Δ -bisimulation if

$$\forall (\sigma, \tau) \in R : \ \sigma(0) = \tau(0) \ \text{and} \ (\Delta \sigma, \Delta \tau) \in R$$

We write

$$\sigma \sim_{\Delta} \tau \equiv \exists \Delta$$
-bisimulation R s.t. $\langle \sigma, \tau \rangle \in R$

△-coinduction proof principle:

$$\sigma \sim \Lambda \tau \Rightarrow \sigma = \tau$$

Δ-bisimulation

• $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ is a Δ -bisimulation if

$$\forall (\sigma, \tau) \in R : \ \sigma(0) = \tau(0) \ \text{and} \ (\Delta \sigma, \Delta \tau) \in R$$

We write

$$\sigma \sim_{\Delta} \tau \equiv \exists \Delta$$
-bisimulation R s.t. $\langle \sigma, \tau \rangle \in R$

△-coinduction proof principle:

$$\sigma \sim_{\Lambda} \tau \Rightarrow \sigma = \tau$$

A generalised Euler formula (cf. Taylor series):

$$\sigma = \frac{(\Delta^0 \sigma)(0) \times X^0}{(1 - X)^1} + \frac{(\Delta^1 \sigma)(0) \times X^1}{(1 - X)^2} + \frac{(\Delta^2 \sigma)(0) \times X^2}{(1 - X)^3} + \cdots$$

Proof: Using

$$\Delta(\frac{X^{n+1}}{(1-X)^{n+2}}) = \frac{X^n}{(1-X)^{n+1}}$$

$$\{\langle \sigma, sum \rangle \mid \sigma \in \mathbb{R}^{\omega}\}$$

An example of Δ -coinduction

• A generalised Euler formula (cf. Taylor series):

$$\sigma = \frac{(\Delta^0 \sigma)(0) \times X^0}{(1 - X)^1} + \frac{(\Delta^1 \sigma)(0) \times X^1}{(1 - X)^2} + \frac{(\Delta^2 \sigma)(0) \times X^2}{(1 - X)^3} + \cdots$$

· Proof: Using

$$\Delta(\frac{X^{n+1}}{(1-X)^{n+2}}) = \frac{X^n}{(1-X)^{n+1}}$$

one easily shows that

$$\{\langle \sigma, sum \rangle \mid \sigma \in \mathbb{R}^{\omega} \}$$

is a Δ -bisimulation.

Yet another final coalgebra structure on streams

- $head(\sigma) = \sigma(0)$
- $even(\sigma) = (\sigma(0), \sigma(2), \sigma(4), \ldots)$
- $odd(\sigma) = (\sigma(1), \sigma(3), \sigma(5), \ldots)$

Final among *zero*-consistent systems

If S is zero-consistent:

$$S$$
 $\forall s \in S, o(I(s)) = o(s)$ $\mathbb{N} \times S \times S$

then

$$S - - \stackrel{\exists \,!\, h}{-} - \rightarrow \mathbb{N}^{\omega}$$

$$\langle o, I, r \rangle \downarrow \qquad \qquad \langle \text{head, even, odd} \rangle$$

$$\mathbb{N} \times S \times S - - \rightarrow \mathbb{N} \times \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$$

Cf. Automatic sequences.

Final among *zero*-consistent systems

If S is zero-consistent:

$$egin{aligned} \mathcal{S} & \forall s \in \mathcal{S}, \ o(\mathit{I}(s)) = o(s) \ & \langle o, \mathit{I}, r
angle \ & \mathbb{N} imes \mathcal{S} imes \mathcal{S} \end{aligned}$$

then

$$S - - \stackrel{\exists \,!\, h}{-} - \rightarrow \mathbb{N}^{\omega}$$

$$\langle o, l, r \rangle \downarrow \qquad \qquad \qquad \langle \text{head, even, odd} \rangle$$

$$\mathbb{N} \times S \times S - - \rightarrow \mathbb{N} \times \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$$

Cf. Automatic sequences.

{head, even, odd}-differential equations

Ex.

$$\begin{aligned} & \text{head}(\tau) = 0 & & \text{even}(\tau) = \tau & & \text{odd}(\tau) = \rho \\ & \text{head}(\rho) = 0 & & \text{even}(\rho) = \tau & & \text{odd}(\rho) = \tau \end{aligned}$$

has as unique solution

$$au = 0110100110010110 \cdots$$

Thue-Morse

(and its complement)

{head, even, odd}-differential equations

Ex.

$$\operatorname{head}(\tau) = 0 \qquad \operatorname{even}(\tau) = \tau \qquad \operatorname{odd}(\tau) = \rho$$
 $\operatorname{head}(\rho) = 0 \qquad \operatorname{even}(\rho) = \tau \qquad \operatorname{odd}(\rho) = \tau$

has as unique solution

$$au = 0110100110010110 \cdots$$

Thue-Morse

(and its complement)

- {head, even, odd}-bisimulation
- {head, even, odd}-coinduction

{head, even, odd}-differential equations

Ex.

$$\begin{aligned} \text{head}(\tau) &= 0 & \text{even}(\tau) &= \tau & \text{odd}(\tau) &= \rho \\ \text{head}(\rho) &= 0 & \text{even}(\rho) &= \tau & \text{odd}(\rho) &= \tau \end{aligned}$$

has as unique solution

$$au = 0110100110010110 \cdots$$

Thue-Morse

(and its complement)

- {head, even, odd}-bisimulation
- {head, even, odd}-coinduction
- Cf. Kupke & R. [2010,2011].

Future

- 1. For instance: classifying SDEs
- 2. For instance: bisimulation-up-to
- 3. For instance: . . .

1. Bisimulation everywhere

Classifying SDEs

initial value	derivative	solution
$\sigma(0) = 1$	$\sigma' = \sigma$	(1,1,1,)
$\sigma(0) = 1$	$\sigma' = \sigma + \sigma$	$(2^0, 2^1, 2^2, \ldots)$
$\sigma(0) = 1$	$\sigma' = \sigma \times \sigma$	(1, 1, 2, 5, 14, 42,)
$\sigma(0) = 1$	$\Delta \sigma = \sigma$	$(2^0, 2^1, 2^2, \ldots)$
$\sigma(0) = 1$	$rac{ extit{d}\sigma}{ extit{d} extit{X}}=\sigma$	$(\frac{1}{0!}, \frac{1}{1!}, \frac{1}{2!}, \frac{1}{3!}, \dots)$
$\sigma(0)=0$	$\operatorname{even}(\sigma) = \sigma$ $\operatorname{odd}(\sigma) = \overline{\sigma}$	Thue-Morse