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Motivation

Robin Milner: bisimulation and coinduction.

Coalgebra, the mathematics of bisimulation.

Behavioural theory of systems.

CMCS, CALCO; also presence in main conferences.

Joint work with many persons.
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Coalgebraic bisimulation: Aczel & Mendler ’89

An F-bisimulation, for a functor F : C — C:

Uy

X R

[

F(X)%F(R)@F(Y)
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Coalgebraic bisimulation: Aczel & Mendler ’89

An F-bisimulation, for a functor F : C — C:

T To

X R Y

N

F(X)%F(R)@F(Y)

e As many types of bisimulation as there are functors . . .
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Coalgebraic bisimulation: Aczel & Mendler ’89

An F-bisimulation, for a functor F : C — C:

T To

X R Y

N

F(X)%F(R)@F(Y)

e As many types of bisimulation as there are functors . . .

e Well-behaved functors: universal coalgebra.
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Coalgebraic bisimulation: Aczel & Mendler ’89

An F-bisimulation, for a functor F : C — C:

Xt g™ .,y
|

N
3
F(X)%F(R),TMF(Y)

e As many types of bisimulation as there are functors . . .
e Well-behaved functors: universal coalgebra.
e Bisimulation/Coalgebra = Congruence/Algebra
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Example: universes of sets

X
o

P(X)

write y € x for y € a(x)
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Example: universes of sets

X
o

P(X)

write y € x for y € a(x)

e R C X x X is a P-bisimulation if for all (x, y) € R:
M vxex = 3y eyst(xX,y)eR

and
@ vy ey = IXexst (xX,y)eR
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Example: universes of sets

X
o

P(X)

write y € x for y € a(x)

e R C X x X is a P-bisimulation if for all (x, y) € R:
M vxex = 3y eyst(xX,y)eR

and
@ vy ey = IXexst (xX,y)eR

e C.f. strong bisimulation on transition systems.

Future
oo
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Sets: examples of bisimulations
X

O{ write y € x for y € a(x)
P(X)
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Sets: examples of bisimulations
X
(0% .
J write y € x for y € a(x)
P(X)
eE.g,for x={x} and y ={y},

R={(x,y)} is abisimulation relation
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Sets: examples of bisimulations
X
(0% .
J write y € x for y € a(x)
P(X)
eE.g.,for x={x} and y = {y},

R={(x,y)} is abisimulation relation

eE.g.,for x={x} and y = {x,y},

R={(x,y), (x,x)} is a bisimulation relation

Future
oo
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Sets: examples of bisimulations
X

O{ write y € x for y € a(x)
P(X)

eE.g., for x={x} and y ={y},

R={(x,y)} is abisimulation relation

eE.g.,for x={x} and y = {x,y},

R={(x,y), (x,x)} is a bisimulation relation

e Strong-extensionality
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Example: determinisic automata

X is final <= o(x) =1

(o.4)] ]

2 x XA X——y <= tx)(a=y

Future
oo
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Example: determinisic automata

X is final < o(x) =1

(o.4)] ]

2 x XA X——y <= tx)(a=y

e R C X x X is a bisimulation if for all (x, y) € R:

o(x)=o(y) and Yac A: (t(x)(a), t(y)(a)) e R

Future
oo
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Det. automata: bisimulation is language equivalence

a b b

R={(x,y), (x,x), (y,¥), (z,2)} is abisimulation relation
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Det. automata: bisimulation is language equivalence

a b f)b
b
@ a @v z
a
R={(x,y), (x,x), (y,¥), (z,2)} is abisimulation relation

¢ Note that here bisimilarity is language (trace) equivalence:

L(x) = L(y)
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Det. automata: bisimulation is language equivalence

a b f)b
b
@ a @v z
a
R={(x,y), (x,x), (y,¥), (z,2)} is abisimulation relation

¢ Note that here bisimilarity is language (trace) equivalence:

L(x) = L(y)

. .. which confused the people from CONCUR for a while.
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Det. automata: bisimulation is language equivalence

a b f)b
b
@ a @v z
a
R={(x,y), (x,x), (y,¥), (z,2)} is abisimulation relation

¢ Note that here bisimilarity is language (trace) equivalence:

L(x) = L(y)
. .. which confused the people from CONCUR for a while.
e Cf. ready, failure etc. equivalence [MIFPS 2012].
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Example: Streams

For a stream o = (¢(0),0(1),0(2),...) € N¥,

e initial value: o(0)
e derivative: o' = (o(1),0(2),0(3),...)

Future
oo
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Example: Streams
For a stream o = (¢(0),0(1),0(2),...) € N¥,
e initial value: o(0)
e derivative: o' = (o(1),0(2),0(3),...)

Nw

N x N (o

Future
oo
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Example: Streams

For a stream o = (¢(0),0(1),0(2),...) € N¥,

e initial value: o(0)
e derivative: o' = (o(1),0(2),0(3),...)

T

N x N (o

We call R C N¥ x N¥ a stream bisimulation if

V(o,7) € R: o(0)=7(0) and (o', 7)€ R
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Example: Streams

e We call R C N¥ x N¥ a stream bisimulation if

V(o,7) € R: o(0)=7(0) and (o', 7)€ R

Future
oo
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Example: Streams
e We call R C N¥ x N¥ a stream bisimulation if

V(o,7) € R: o(0)=7(0) and (o', 7)€ R

o We write

o~ 7 = dJbisimulation Rs.t. (o,7) € R
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Example: Streams
e We call R C N¥ x N¥ a stream bisimulation if

V(o,7) € R: o(0)=7(0) and (o', 7)€ R

o We write

o~ 7 = dJbisimulation Rs.t. (o,7) € R

e Seemingly trivial coinduction proof principle:

oO~NT = O0O=T
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Yolo

Example: Streams

e We call R C N¥ x N¥ a stream bisimulation if

V(o,7) € R: o(0)=7(0) and (o', 7)€ R

o We write

o~ 7 = dJbisimulation Rs.t. (o,7) € R

e Seemingly trivial coinduction proof principle:
oO~NT = O0O=T

(the proof of the principle itself is trivial)

Future
[e]e]
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2. The power of coinduction



2. The power of coinduction
00000000

2. The power of coinduction

o We will illustrate the strength of the coinduction proof
principle:
oO~NT = O0O=T
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2. The power of coinduction

o We will illustrate the strength of the coinduction proof
principle:
oO~NT = O0O=T

o But first: defining streams with

stream differential equations
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Stream differential equations
e Recall, for a stream o = (¢(0),0(1),0(2),...) € N¥,

- initial value (= head): ¢(0)
- derivative (= tail): o =

(0(1),0(2),0(3),-..)



1. Bisimulation everywhere 2. The power of coinduction 3. More bisimulations, still Future
00000000 00000000 00000000 00

Stream differential equations
e Recall, for a stream o = (¢(0),0(1),0(2),...) € N¥,

- initial value (= head): ¢(0)
- derivative (= tail): o' = (c(1),0(2),0(3),...)

e Examples of stream differential equations:

initial value derivative solution
o(0) =1 o'=o0 (1,1,1,..))
o(0) =1 o =c+o (20,2122 )

o(0)=1 o =oxo (1,1,2,5,14,42,..)
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Stream differential equations
e Recall, for a stream o = (¢(0),0(1),0(2),...) € N¥,

- initial value (= head): ¢(0)
- derivative (= tail): o' = (c(1),0(2),0(3),...)

e Examples of stream differential equations:

initial value derivative solution

o(0) =1 o'=o0 (1,1,1,..))

o(0) =1 o =c+o (20,2122 )
o(0)=1 o =oxo (1,1,2,5,14,42,..)

e Existence of unique solutions: by finality!

Future
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A proof by coinduction: Moessner’s theorem

A. Moessner (1951), proof by O. Perron (1951) and .
Paasche (1952).

Cf. Ralf Hinze: Scans and convolutions - a calculational
proof of Moessner’s theorem (Oxford University, 2010).

Our proof: by coinduction (Niqui & R., 2011) . . .

. .. is a student’s exercise.

Cf. the original proof: advanced binomial coefficient
manipulation!!
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Moessner’s theorem (k = 3)

naa 1 2 3 4 5 6 7 8 9 10 11 12
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Moessner’s theorem (k = 3)

naa 1 2 3 4 5 6 7 8 9 10 11 12

Drops 1 2 4 5 7 8 10 11
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Moessner’s theorem (k = 3)

naa 1 2 3 4 5 6 7 8 9 10 11 12
Drops 1 2 4 5 7 8 10 11

x 1 3 7 12 19 27 37 48
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Moessner’s theorem (k = 3)

nat i 2 3 4 5 6 7 8 9 10 11 12
Drops 1 2 4 5 7 8 10 11
x 1 3 7 12 19 27 37 48

7 19 37

—

Dropo
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Drop, 1
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Moessner’s theorem (k = 3)

2 3 4 5 6 7 8 9 10 11 12
2 4 5 7 8 10 11
3 7 12 19 27 37 48

7 19 37

8 27 64
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Drops
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Moessner’s theorem (k = 3)

2 3 4 5 6 7 8 9 10 11 12
2 4 5 7 8 10 11

3 7 12 19 27 37 48

7 19 37
8 27 64
23 33 43
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Moessner’s theorem (k=3)

nat® = ¥ o Drop, o ¥ o Drops(nat)
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Moessner’s theorem (k=3)

nat® = ¥ o Drop, o ¥ o Drops(nat)

where nat = (1,2, 3,...) satisfies
nat(0) = 1 nat’ = nat + ones
with ones = (1,1,1,...); and
nat® = (1%,2%,3%,...) = nat® nat® nat

with
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Moessner’s theorem (k=3)

nat® = ¥ o Drop, o ¥ o Drops(nat)
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Moessner’s theorem (k=3)

nat® = ¥ o Drop, o ¥ o Drops(nat)

and where

Y(o) = (0(0), 0(0)+o(1), 0(0) +c(1) +0(2),...)
Drops(c) = (0(0),0(2),0(4),...)

Drops(c) = (0(0),0(1), 0(3),0(4), a(6),0(7), ...)

can all be specified by elementary stream diff. equations.
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Proving Moessner’s theorem

nat’> = ¥ o Drop, o ¥ o Drops(nat)
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Proving Moessner’s theorem

nat’> = ¥ o Drop, o ¥ o Drops(nat)

e We use the coinduction proof principle: for all o, 7 € N¥,

O~NT = 0=T
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Proving Moessner’s theorem

nat’> = ¥ o Drop, o ¥ o Drops(nat)

e We use the coinduction proof principle: for all o, 7 € N*,

O~NT = 0=T

e So it suffices to construct a bisimulation R with

(nat®, ¥ o Drop, o ¥ o Drops(nat)) € R
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Proving Moessner’s theorem

nat’> = ¥ o Drop, o ¥ o Drops(nat)

e We use the coinduction proof principle: for all o, 7 € N*,

O~NT = 0=T

e So it suffices to construct a bisimulation R with

(nat®, ¥ o Drop, o ¥ o Drops(nat)) € R

e Easy, using the previous stream differential equations . . .
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Proving Moessner’s theorem

nat® = ¥ o Drop, o ¥ o Drops(nat)
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Proving Moessner’s theorem

nat® = ¥ o Drop, o ¥ o Drops(nat)

Proof. We define R as the smallest set such that

(i) (nat®, ¥ o Drop, o ¥ o Drops(nat)) € R

Future
oo
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Proving Moessner’s theorem

nat® = ¥ o Drop, o ¥ o Drops(nat)

Proof. We define R as the smallest set such that
(i) (nat®, ¥ o Drop, o ¥ o Drops(nat)) € R

(i) (nat® (nat+ones)?, ¥ o Dropd o ¥ o Dropl(nat)) € R
> 3
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Proving Moessner’s theorem

nat® = ¥ o Drop, o ¥ o Drops(nat)

Proof: We define R as the smallest set such that
i) (nat®, ¥ o Drop, o ¥ o Drops(nat)) € R

(nat® (nat + ones)?, ¥ o Dropd o ¥ o Dropi(nat)) € R
(iii) if (01,02) € Rand (11, 2) € R then (o1 + 7y, 00+ 72) € R

(i)
(i)
)
)

(iv) (o,0) € R (all o)
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Proving Moessner’s theorem

nat® = ¥ o Drop, o ¥ o Drops(nat)

Proof: We define R as the smallest set such that
(i) (nat®, ¥ o Drop, o ¥ o Drops(nat)) € R
(i) (nat® (nat+ones)?, ¥ o Dropd o ¥ o Dropi(nat)) € R
(iii) if (01,02) € Rand (11, 2) € R then (o1 + 7y, 00+ 72) € R
(iv) (0,0) € R (all o)

Then: R is a bisimulation relation.
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3. More bisimulations, still
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3. More bisimulations, still

e Every functor F has a notion of F-bisimulation . . .

e ... and F-coinduction definition and proof principles.
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3. More bisimulations, still

e Every functor F has a notion of F-bisimulation . . .
e ... and F-coinduction definition and proof principles.

e Next: different notions of bisimulation for single F.
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3. More bisimulations, still

Every functor F has a notion of F-bisimulation . . .

... and F-coinduction definition and proof principles.

Next: different notions of bisimulation for single F.

Again, we use streams as an example.

Cf. Conway, R., Escardo & Pavlovic, Rosu, Kupke & R.
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Different final coalgebra structures on R¥
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Different final coalgebra structures on R¥

RUJ

R x R¥ (o

where
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Different final coalgebra structures on R¥

LT 1]
R x R (0(0), o' (0(0), Ac) (0(0), %)
where

o o =(c(1),0(2),0(3),...)
e Ao=(o(1)—0(0), 0(2) —0c(1), 0(3) —c(2),...)
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Different final coalgebra structures on R¥

RUJ

|

R x R (0(0), o' (0(0), Ac) (0(0), %)

——9
+——9

where

e o =(c(1),0(2),0(3),...)

e Ac=(c(1)—0(0), 0(2) —c(1), o(3) —0(2),...)
=(1-0(1),2-0(2), 3-0(3),...)

Is



1. Bisimulation everywhere

2. The power of coinduction
00000000

3. More bisimulations, still Future
00000000

0O0e00000 (o]

Non-standard stream calculus
o' =(c(1),0(2),0(3),...)
Ao = (c(1) —0o(0), 0(2) —a(1), o(3) —a(2),...)

do —(1.5(1), 2-0(2), 3-5(3),...)
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Non-standard stream calculus

o' =(c(1),0(2),0(3),...)

Ao = (c(1) —0o(0), 0(2) —a(1), o(3) —a(2),...)

42 = (1-0(1), 2-0(2), 3-0(3)....)

Non-standard stream differential equations:

initial value derivative solution

Future
oo
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Non-standard stream calculus

Ao = (c(1) —0o(0), 0(2) —a(1), o(3) —a(2),...)

42 = (1-0(1), 2-0(2), 3-0(3)....)

Non-standard stream differential equations:

initial value derivative solution

e Existence of unique solutions: again by finality (3 versions)!

Future
oo
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A-bisimulation

e RCNYxN¥ isa A-bisimulation if

V(o,7) € R: 0(0)=7(0) and (Ao, AT)€R
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A-bisimulation
e RCNYxN¥ isa A-bisimulation if

V(o,7) € R: 0(0)=7(0) and (Ao, AT)€R

o We write

o~aT = 3 A-bisimulation Rst. (o,7) € R

Future
oo
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A-bisimulation
e RCNYxN¥ isa A-bisimulation if

V(o,7) € R: 0(0)=7(0) and (Ao, AT)€R

o We write

o~aT = 3 A-bisimulation Rst. (o,7) € R

e A-coinduction proof principle:

O~NAT = O0O=T
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An example of A-coinduction

e A generalised Euler formula (cf. Taylor series):

L (A%)(0) x X0 (A'0)(0) x X! (A20)(0) x X2
T A-X) T A-Xxg T d-xp
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An example of A-coinduction

e A generalised Euler formula (cf. Taylor series):

(A%)(0) x X0  (A1o)(0) x X' (A25)(0) x X2
(1-X) (1-X)? (1-X)?3

e Proof. Using

Xn+1 Xn

(1 7X)n+2) (1 —X)”H

A(

one easily shows that
{(o, sum) |0 € R¥}

is a A-bisimulation.
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Yet another final coalgebra structure on streams

| |
N x N x N¢ (head(c), even(o), odd(o))

where
e head(c) =0(0)
e even(o) =(0(0),0(2),0(4),...)
e o0dd(c) = (c(1),0(3),0(5),...)



1. Bisimulation everywhere 2. The power of coinduction 3. More bisimulations, still Future
00000000 00000000 000000 @0 (o]

Final among zero-consistent systems

If Sis zero-consistent:

S Vse S, o(l(s)) = o(s)
(0,1, r)h
NxSxS§
then
S-- dth -+ N
(0,1, r>J J(head, even, odd)

NxSxS---+NxNxN¥
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Final among zero-consistent systems

If Sis zero-consistent:

S Vse S, o(l(s)) = o(s)
(0,1, r)J
NxSxS§
then
S-- dth -+ N
(0,1, r{ J(head, even, odd)

NxSxS---+NxNxN¥

e Cf. Automatic sequences.
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{head, even, odd}-differential equations

Ex.

head(r) =0 even(r) =71 odd(7) =p
head(p) =0 even(p) =7 odd(p) =71
has as unique solution

7=0110100110010110- - - Thue-Morse

(and its complement)



1. Bisimulation everywhere
00000000

2. The power of coinduction
00000000

3. More bisimulations, still Future
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{head, even, odd}-differential equations

Ex.

head(r) =0 even(r) =71
head(p) =0 even(p) =7

has as unique solution

7=10110100110010110- - -

(and its complement)

e {head, even, odd}-bisimulation

e {head, even, odd}-coinduction

odd(7) =p
odd(p) =71
Thue-Morse
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{head, even, odd}-differential equations

Ex.

head(r) =0 even(r) =71 odd(7) =p
head(p) =0 even(p) =7 odd(p)

-
has as unique solution
7=0110100110010110- - - Thue-Morse
(and its complement)

e {head, even, odd}-bisimulation
e {head, even, odd}-coinduction
e Cf. Kupke & R.[2010,2011].
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1. For instance: classifying SDEs
2. For instance: bisimulation-up-to

3. For instance: . . .
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Classifying SDEs
initial value derivative solution
o0)=1 o =0 (1,1,1,..))
c0)=1 o =040 (20,2122 )
c0)=1 o =oxo (1,1,2,5,14,42,..)
c(0)=1 Ao=oc (20,2122 )

o(0) =1 g—;za (

)

N
@l

1
y 10

=

)

o(0)=0 even(c) = o Thue-Morse
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