From ML to program proof

or: The continuation of functional programming by other means

Xavier Leroy
INRIA Paris-Rocquencourt

Milner symposium, 2012-04-17

-

In the beginning.

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 17, 348375 (1978)

A Theory of Type Polymorphism in Programming
RoBIN MILNER

Computer Science Department, University of Edinburgh, Edinburgh, Scotland
Received October 10, 1977; revised April 19, 1978

Principal type-schemes for functional programs

Tuis Damas* and Robin Milner

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types,
entails defining procedures which work well on objects of a wide variety. We present a
formal type discipline for such polymorphic procedures in the context of a simple pro-
gramming language, and a compile time type-checking algorithm %" which enforces the

Edinburgh University

discipline. A Semantic Soundness Theorem (based on a formal semantics for the language) 1. Introdution of successful use of th
states that well-type programs cannot “go wrong” and a Syntactic Soundness Theorem e paper ta concerned with the polymrphic ner rosaarch and i ¢

states that if % accepts a program then it is well typed. We also discuss extending these

results to richer languages; a type-checking algorithm based on ¥ is in fact already type discipline of ML, which is a general purpose it has become important

implemented and working, for the metalanguage ML in the Edinburgh LCF system, functional programming language, although it was particularly because th
first introduced as a metalanguage (whence its (due to polymorphisa) ,
name) for conducting proofs in the LCF proof system soundness) and detectic
(@] The type discipline was studled in (Mil], has proved to be one of

where it was shown to be semantically sound, in a
The discipline can

sense made precise below, but where one important

small example. Let us
question was left open: does the type-checking

"map", which maps a giv
algorithm - or more precisely, the type assignment

- that is,
algorithn (since types are assigned by the compiler,

map £ [x1j...:xn]

and need not be mentioned by the programer) - £ind
The required declaratic

the most general type possible for every expression

(POPL 1082) ans tectocations sere e snsver ene question on

letrec map £ 5 = if nul

else ¢

Core ML

Hindley-Milner polymorphic types
Damas-Milner type inference

First-class Datatypes and
functions pattern-matching

Things we learned from Core ML

Strong static typing is the programmer’s friend.

Types need not be verbose.

Explicit types as documentation (datatypes, interfaces).

Types are compatible with code reuse.

Opportunities for reuse can be discovered rather than planned.

Not just type safety, but also exhaustiveness checks.

A rich lineage

SASL (’Agda#
-
Miranda —a Haskell — Haskell9§ —

LazyML —
Hope (V rv Alice

LCF ML = SML90——— SMLY7

Lisp -~ MoscowML

CAML ——» Caml Light — OCam| —

g

1985-2000: a flurry of type systems

Type more features; type them more precisely.
Type other programming paradigms (OO, distributed).

Typed intermediate & assembly languages.

VA
V(x)

X1 X2 X

(Core ML as the bottom of a potential well.)

Principal types or not?

Beauty can also arise from formal constraints. . .

William Shakespeare FIGURE 4. Opening of Fugue XXIi from Part [of J.S. Bach's
“The Well-Tempered Clavier."

Sonnet 116

Let me niot to the marriage of true minds
Admit impediments. Love is not low
Which alters when it alteration finds,
Or bends with the removerto remove:
0. nol it is an ewr-fixed mark,
That looks on tempests and is never shaken;
Itis the star to ewery wandering bark,
Whose worth's unknown, although his height be taken.
Love's not Time's fool, though rosy lips and cheeks
Within his bending sickle's compass come;
Tove alters not with his brief hours and weeks,
But bears it out even to the edge of doom
If this be error and upon me prov'd,
I tever writ, nior no man evwer lovd.

Novel approaches driven by principality

Exhibit A: Haskell's type classes.

How to make ad-hoc polymorphism less ad hoc

Philip Wadler and Stephen Blott
University of Glasgow*

Abstract

This paper presents fype classes, a new approach
to ad-hoc polymorphism. Type classes permit over-
loading of arithmetic operators such as multiplica-
tion, and generalise the “eqtype variables” of Stan-
dard ML. Type classes extend the Hindley/Milner
polymorphic type system, and provide a new ap-
proach to issues that arise in object-oriented pro-
gramming, bounded type quantification, and ab-
stract data types. This paper provides an informal
introduction to type classes, and defines them for-
mally by means of type inference rules.

ML [HMMS86, Mil87], Miranda*[Tur85], and other
languages. On the other hand, there is no widely
accepted approach to ad-hoc polymorphism, and so
its name is doubly appropriate.

This paper presents type classes, which extend the
Hindley /Milner type system to include certain kinds
of overloading, and thus bring together the two sorts
of polymorphism that Strachey separated.

The type system presented here is a generalisa-
tion of the Hindley/Milner type system. As in that
system, type declarations can be inferred, so explicit
type declarations for functions are not required. Dur-
ing the inference process, it is possible to translate a

Novel approaches driven by principality

Exhibit B: row polymorphism (Wand, Rémy, Garrigue)

(m:int; p1) (k : bool; p2)

Pitfalls

Multiple sub-languages:
core + modules 4+ OO classes + type classes + ...

Intractable type expressions.
Diminishing returns.

Complicated encodings:
phantom types, GADTs, ...

2000—now: towards program verification
(for security and safety)

A big chunk of the P.L. community shifts to verification
(static analysis, model checking, program proof, combinations thereof).

C Astree, BLAST, CBMC, Coverity, Fluctuat,
Frama-C, Polyspace, SLAM, VCC, ...

Java, C# Bandera, CodeContracts, Coverity, ESC/Java2,
Java Pathfinder, KeY, Klocwork, Spec#, ...

F.P. F*

Another chunk (re-)discovers LCF-style interactive proof assistants
(the POPLmark challenge, etc).

A fragmented landscape

Func. prog. lang.

Proof

no verification assistants

“Lesser” prog. lang.
w/ rich verification tools

How to develop and formally verify a program well-suited to F.P.?
(running example: a compiler)

Early compiler verification in Stanford LCF
(Machine Intelligence, 1972)

3

Proving Compiler Correctness
in a Mechanized Logic

R. Milner and R. Weyhrauch

Computer Science Department
Stanford University

Abstract

We discuss the task of machine-checking the proof of a simple compiling
algorithm. The proof-checking program is LCF, an implementation of a logic
for computable functions due to Dana Scott, in which the abstract syntax
and extensional semantics of programming languages can be naturally
expressed. The source language in our example is a simple ALGoL-like
language with assignments, conditionals, whiles and compound statements.
The target language is an assembly language for a machine with a pushdown
store. Algebraic methods are used to give structure to the proof, which is
presented only in outline. However, we present in full the expression-compiling
part of the algorithm. More than half of the complete proof has been machine
checked, and we anticipate no difficulty with the remainder. We discuss our
experience in conducting the proof, which indicates that a large part of it
may be automated to reduce the human contribution.

Early compiler verification in Stanford LCF

APPENDIX 2: command sequence for McCarthy-Painter lemma

GOAL Ye sp,lswfse e1iMT(compe e,3p)Ssvof(sp) [((MSEle,svof sp))épdofisp)),
‘Yo, lgufse eitlgwft(compe @)ZTT,
Ye,lswfae qit{gount(oompe e)=B)STT)

TRY & INDUCT 56}
TRY 1 SIMPL}
LABEL INDHYP}
rg;yzlAgs;:x ’
ASES weg nif, ’
CABEL Ty oefuntfrel
TRY 1 CASES typo an_Nj
TRY 4 SIMPL BY ,FMTi,,FMSE; ,FCOMPE, ,FISHFTY, ,FCOUNT)
TRY 238S=, TTlSIMPL.TT:QED;
TRY 3 CASES tyng g3 E}
CTRY 1 SUBST ,FeSMPES
ss-.TTlSIHFL.TT,usz BOTH3 =SS+, TT;
INGL-,aiss+-l1NcL--.2;ss¢-;1NcL---,s;SS¢-
TRY & GONJ;
TRY 4 SIMPL;
TRY 1 USE CDUNTil
TRY 11
APPL | INDHYP+2,grglof 8}
LABEL CARG1j
SIMPL~}QED}
TRY 2 USE CQUNT4s
TRY 4

Compiler verification

Theorem (Semantic preservation)

Let S be a source program and E an executable.
Assume the compiler produces E from S,

without reporting compile-time errors.

Then, for all observable behaviors b, E | b— S| b

A challenge for standard deductive program provers:

e The specification involves complex logical definitions
(two operational semantics).

e The program involves recursion and tree/graph-shaped data.

A good match for interactive theorem provers.

From Milner & Weyrauch. ..

Arithmetic Stack
expressions machine

to the CompCert C verified compiler

side-effects out] type elimination
CompCert C i C#minor
of expressions | J loop 5|mpl|f|cat|onsl

stack allocation

Optimizations: constant prop., CSE, tail calls,
(LCM), (Software pipelining) of "&" variables Y

CFG construction .) instruction (.
RTL | CminorSel = - Cminor
) expr. decomp. \) selection

(Instruction scheduling)

register allocation (IRC)

Y
) linearization (R spilling, reloading .
LTL of the CFG | LTLin) calling conventions Linear

layout of stack frames

Y
asm code (Mach
C

- a
generation

A

Asm

Using the Coq proof assistant

@ To write the specification and conduct the proof.
(50000 lines; 4 person.years)

® To program the compiler.
In pure, strict, terminating functional style.
Executability via Coq — OCaml extraction.

Programming a compiler pass in Coq

Fixpoint transl_expr (map: mapping) (a: expr) (rd: reg) (nd: node)
{struct a}: mon node :=
match a with

| Evar v =>
do r <- find_var map v; add_move r rd nd
| Eop op al =>
do rl <- alloc_regs map al;
do no <- add_instr (Iop op rl rd nd);
transl_exprlist map al rl no
| Eload chunk addr al =>
do rl <- alloc_regs map al;
do no <- add_instr (Iload chunk addr rl rd nd);
transl_exprlist map al rl no

Programming limitations

In exchange for powerful proof support, we must deal with
e Strictness: no problem
e Purity: use monads for state and errors.

e Termination: often a problem.
Use “fuel” to bound recursions.
Irritating issue: we're only interested in partial correctness.

Is there a better way?

The Pangolin system
(Y. Régis-Gianas, F. Pottier)

Pure mini-ML

automatic
+ logical V.C.gen HQL p|.roof FO'L proof theor_em
specifications obligations obligations proving
(Alt-Ergo)

How to specify an argument f : A — B to a higher-order function?

e Not by a function of the logic (non-termination, ...)
e But by a pair of predicates:

Pre(f) : A — Prop
Post(f) : Ax B — Prop

Example of specification

let rec add (x, a) where (bst(a) and avl(a))
returns b where

(bst(b) and avl(b) and

elements (b) ===

singleton (x) U elements (a)) =
match a with
| Empty ->

Node (Empty, x, Empty)
| Node (1, y, r) —>

if x = y then a

else if x < y then bal (add (x, 1), y, r)

else bal (1, y, add (%, 1))
end

Proof obligations automatically discharged by Alt-Ergo.

Example of higher-order specification

let rec map (f, a) where
(bst(a) and avl(a)
and Vx € elements(a), Pre(f)(x))
returns b where
(bst(b) and avl(b)
and Vx € elements(a), 3y € b, Post(f) (x,y)
and Vy € elements(b), dx € a, Post(f) (x,y))

The CFML system

(A. Charguéraud)

Characteristic
formulas

Most of Caml
(no assertions)

Interactive proof

The characteristic formula [[t]] of a term t is the HO predicate s.t.
VP, Q, [[t]] P Q < {P} t {Q} (in Hoare logic)

(= weakest precondition / denotational semantics / deep embedding.)

The characteristic formula [[t]] follows exactly the structure of t
— lends itself well to interactive proof.

In closing. . .

Pure, strict functional programming is a very short path from a
program to its correctness proof.

Contemporary F.P. languages do not realize this potential.
Axiomatic semantics is not just for imperative languages!
Shall we just embrace and improve proof assistants as P.L.7

Or design F.P.L. with verifiability in mind?

