
From ML to program proof
or: The continuation of functional programming by other means

Xavier Leroy

INRIA Paris-Rocquencourt

Milner symposium, 2012-04-17

In the beginning. . .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 17, 348-375 (1978)

A Theory of Type Polymorphism in Programming

ROBIN MILNER

Computer Science Department, Vm+ersity of Edinburgh, Edinburgh, Scotland

Received October 10, 1977; revised April 19, 1978

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types,
entails defining procedures which work well on objects of a wide variety. We present a
formal type discipline for such polymorphic procedures in the context of a simple pro-
gramming language, and a compile time type-checking algorithm w which enforces the
discipline. A Semantic Soundness Theorem (based on a formal semantics for the language)
states that well-type programs cannot “go wrong” and a Syntactic Soundness Theorem
states that if fl accepts a program then it is well typed. We also discuss extending these
results to richer languages; a type-checking algorithm based on w is in fact already
implemented and working, for the metalanguage ML in the Edinburgh LCF system,

1. INTRODUCTION

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types
(LISP is a perfect example), entails defining procedures which work well on objects of
a wide variety (e.g., on lists of atoms, integers, or lists). Such flexibility is almost essential
in this style of programming; unfortunately one often pays a price for it in the time taken
to find rather inscrutable bugs-anyone who mistakenly applies CDR to an atom in
LISP, and finds himself absurdly adding a property list to an integer, will know the
symptoms. On the other hand a type discipline such as that of ALGOL 68 [22] which
precludes the flexibility mentioned above, also precludes the programming style which
we are talking about. ALGOL 60 was more flexible-in that it required procedure
parameters to be specified only as “procedure” (rather than say “integer to realprocedure”)
-but the flexibility was not uniform, and not sufficient.

An early discussion of such flexibility can be found in Strachey [19], who was probably
the first to call it polymorphism. In fact he qualified it as “parametric” polymorphism,
in contrast to what he called “adhoc” polymorphism. An example of the latter is the use
of “+” to denote both integer and real addition (in fact it may be further extended to
denote complex addition, vector addition, etc.); this use of an identifier at several distinct
types is often now called “overloading,” and we are not doncerned with it in this paper.

In this paper then, we present and justify one method of gaining type flexibility, but
also retaining a discipline which ensures robust programs. We have evidence that this

348
0022-0000/78/0173-0348$02.00/0
Copyright 8 1978 by Academic Press, Inc.
All rights of reproduction in any form reserved.

Principal type-schemes for functional programs

Luis Darnas* and Robin Milne~

Edinburgh University

1. Introduction

This paper is concerned with the polymorphic

type discipline of NL, which is a general purpose

functional programming language, although it was

first introduced as a metalanguage (whence its

name) for conducting proofs in the LCF proof system

[GMW] . The type discipline was studied in [Mil] ,

where it was shown to be semantically sound, in a

sense made precise below, but where one important

question was left open: does the type-checking

algorithm - or more precisely, the type assignment

algorithm (since types are assigned by the compiler,

and need not be mentioned by the programmer) - find

the most general type possible for every expression

and declaration? Here we answer the question in

the affirmative, for the purely applicative part

of ML. It follows immediately that it is decid-

able whether a program is well-typed, in contrast

with the elegant and slightly more permissive type

discipline of Coppo [Cop] . After several years

* The work of this author is supported by the
Portuguese Instituto National de Investigacao
Cientifica.

Permksion to copy without fee all or part of this material k granted
provided that the copies are not made ordktributed fordkect
commercial advantage, the ACM copyright notice and the title of the
publication and ha date appear, and notice k given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

@ 1982 ACM O-89791-065-6/82/OOl/0207 $00.75

of successful use of the language, both in LCF and

other research and in teaching to undergraduates,

it has become important to answer these questions -

particularly because the combination of flexibility

(due to polymorphism) , robustness (due to semantic

soundness) and detection of errors at compile time

has proved to be one of the strongest aspects of ML.

The discipline can be well illustrated by a

small example. Let us define in ML the function

“map”, which maps a given function over a given list

- that is,

map f [xl;. ..;xn] =

The required declaration

letrec map f s = if null—

[f(xl); f(xn)]

is

s then nil

else cons(f (hd s)) (map f (tl s))

The type-checker will deduce a type-scheme for “map”

from existing type-schemes for “null”, “nil”, “cons”,

“hd” and “tl”; the term “type-scheme” is appropriate

since all these objects are polymorphic. In fact,

from

null : Va(a list+ bool)

nil : Va(a list)

cons : Va(a + (a list + u list))

hd : Va(u list + a)

tl : VU([

will be deduced

maP : V’WV(3

list + a list)

(u + !3) + (a list+5 list) .

207

(POPL 1982)

Core ML

First-class
functions

Datatypes and
pattern-matching

Hindley-Milner polymorphic types
Damas-Milner type inference

Things we learned from Core ML

Strong static typing is the programmer’s friend.

Types need not be verbose.

Explicit types as documentation (datatypes, interfaces).

Types are compatible with code reuse.

Opportunities for reuse can be discovered rather than planned.

Not just type safety, but also exhaustiveness checks.

A rich lineage

LCF ML SML90 SML97

LazyML
Miranda

Haskell Haskell98

CAML Caml Light OCaml

F#

MoscowML

Alice

Agda

Hope

SASL

Lisp

1985–2000: a flurry of type systems

Type more features; type them more precisely.

Type other programming paradigms (OO, distributed).

Typed intermediate & assembly languages.

http://upload.wikimedia.org/wikipedia/commons/c/c5/Potenti...

1 of 1 13/4/12 15:36

(Core ML as the bottom of a potential well.)

Principal types or not?

Beauty can also arise from formal constraints. . .

Novel approaches driven by principality

Exhibit A: Haskell’s type classes.

How to make ad-hoc polymorphism less ad hoc

Philip Wadler and Stephen Blott
University of Glasgow*

Abstract
This paper presents type classes, a new approach
to ad-hoc polymorphism. Type classes permit over-
loading of arithmetic operators such as multiplica-
tion, and generalise the “eqtype variables” of Stan-
dard ML. Type classes extend the Hindley/Milner
polymorphic type system, and provide a new ap-
proach to issues that arise in object-oriented pro-
gramming, bounded type quantification, and ab-
stract data types. This paper provides an informal
introduction to type classes, and defines them for-
mally by means of type inference rules.

1 Introduction
Strachey chose the adjectives ad-hoc and panzmelric
to distinguish two varieties of polymorphism [Str67].

Ad-hoc polymorphism occurs when a function is
defined over several diflerent types, acting in a dif-
ferent way for each type. A typical example is
overloaded multiplication: the same symbol may be
used to denote multiplication of integers (as in 3*3)
and multiplication of floating point values (as in
3.14*3.14).

Parametric polymorphism occurs when a function
is defined over a range of types, acting in the same
way for each type. A typical example is the length
function, which acts in the same way on a list of
integers and a list of floating point numbers.

One widely accepted approach to parametric
polymorphism is the Hindley/Milner type system
[Hin69, Mi178, DM82], which is used in Standard

*Authors’ address: Department of Computing Science,
University of Glasgow, Glasgow G12 SQQ, Scotland. Elec-
tronic mail: aadler, blottUlcs .glasgou .ac .uk.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and n*
tice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

0 1989 ACM 0-89791-.294-2/89/0001/0060 $1.50

ML [HMM86, Mi187], Mirandal[Tur85], and other
languages. On the other hand, there is no widely
accepted approach to ad-hoc polymorphism, and so
its name is doubly appropriate.

This paper presents type classes, which extend the
Hindley/Milner type system to include certain kinds
of overloading, and thus bring together the two sorts
of polymorphism that Strachey separated.

The type system presented here is a generalisa-
tion of the Hindley/Milner type system. As in that
system, type declarations can be inferred, so explicit
type declarations for functions are not required. Dur-
ing the inference process, it is possible to translate a
program using type classes to an equivalent program
that does not use overloading. The translated pro-
grams are typable in the (ungeneralised) Hindley/
Milner type system.

The body of this paper gives an informal introduc-
tion to type classes and the translation rules, while
an appendix gives formal rules for typing and trans-
lation, in the form of inference rules (as in [DM82]).
The translation rules provide a semantics for type
classes. They also provide one possible implementa-
tion technique: if desired, the new system could be
added to an existing language with Hindley/Milner
types simply by writing a pre-processor.

Two places where the issues of ad-hoc polymor-
phism arise are the definition of operators for arith-
metic and equality. Below we examine the ap-
proaches to these three problems adopted by Stan-
dard ML and Miranda; not only do the approaches
differ between the two languages, they also differ
within a single language. But as we shall see, type
classes provide a uniform mechanism that can ad-
dress these problems.

This work grew out of the efforts of the Haskell
committee to design a lazy functional programming
language2. One of the goals of the Haskell commit-

‘Miranda is a trademark of Research Software Limited.
2The Haskell committee includes: Arvind, Brian Boutel,

Jon Fairbairn, Joe Fasel, Paul Hudak, John Hughes, Thomas
Johnsson, Dick Kieburtz, Simon Peyton Jones, Ftishiyur
Nikhil, Mike Reeve, Philip Wadler, David Wise, and Jonathan

60

Novel approaches driven by principality

Exhibit B: row polymorphism (Wand, Rémy, Garrigue)

�m : int; ρ1� �k : bool; ρ2�

�m : int; ∅� �m : int; k : bool; ∅�

Pitfalls

Multiple sub-languages:
core + modules + OO classes + type classes + . . .

Intractable type expressions.

Diminishing returns.

Complicated encodings:
phantom types, GADTs, . . .

2000–now: towards program verification
(for security and safety)

A big chunk of the P.L. community shifts to verification
(static analysis, model checking, program proof, combinations thereof).

C Astree, BLAST, CBMC, Coverity, Fluctuat,
Frama-C, Polyspace, SLAM, VCC, . . .

Java, C# Bandera, CodeContracts, Coverity, ESC/Java2,
Java Pathfinder, KeY, Klocwork, Spec#, . . .

F.P. F*

Another chunk (re-)discovers LCF-style interactive proof assistants
(the POPLmark challenge, etc).

A fragmented landscape

“Lesser” prog. lang.
w/ rich verification tools

Func. prog. lang.
no verification

Proof
assistants

Agda ACL2

How to develop and formally verify a program well-suited to F.P.?
(running example: a compiler)

Early compiler verification in Stanford LCF
(Machine Intelligence, 1972)

Early compiler verification in Stanford LCF

Compiler verification

Theorem (Semantic preservation)

Let S be a source program and E an executable.
Assume the compiler produces E from S,
without reporting compile-time errors.
Then, for all observable behaviors b, E ⇓ b =⇒ S ⇓ b

A challenge for standard deductive program provers:

• The specification involves complex logical definitions
(two operational semantics).

• The program involves recursion and tree/graph-shaped data.

A good match for interactive theorem provers.

From Milner & Weyrauch. . .

Arithmetic
expressions

Stack
machine

. . . to the CompCert C verified compiler

CompCert C Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

MachAsm

side-effects out

of expressions

type elimination

loop simplifications

stack allocation

of “&” variables

instruction

selection

CFG construction

expr. decomp.

register allocation (IRC)

linearization

of the CFG

spilling, reloading

calling conventions

layout of stack frames

asm code

generation

Optimizations: constant prop., CSE, tail calls,

(LCM), (Software pipelining)

(Instruction scheduling)

Using the Coq proof assistant

1 To write the specification and conduct the proof.
(50 000 lines; 4 person.years)

2 To program the compiler.
In pure, strict, terminating functional style.
Executability via Coq → OCaml extraction.

Programming a compiler pass in Coq

Fixpoint transl_expr (map: mapping) (a: expr) (rd: reg) (nd: node)
{struct a}: mon node :=

match a with
| Evar v =>

do r <- find_var map v; add_move r rd nd
| Eop op al =>

do rl <- alloc_regs map al;
do no <- add_instr (Iop op rl rd nd);
transl_exprlist map al rl no

| Eload chunk addr al =>
do rl <- alloc_regs map al;
do no <- add_instr (Iload chunk addr rl rd nd);

transl_exprlist map al rl no
| ...

Programming limitations

In exchange for powerful proof support, we must deal with

• Strictness: no problem

• Purity: use monads for state and errors.

• Termination: often a problem.
Use “fuel” to bound recursions.
Irritating issue: we’re only interested in partial correctness.

Is there a better way?

The Pangolin system
(Y. Régis-Gianas, F. Pottier)

Pure mini-ML
+ logical

specifications

V.C.gen HOL proof
obligations

FOL proof
obligations

automatic
theorem
proving

(Alt-Ergo)

How to specify an argument f : A → B to a higher-order function?

• Not by a function of the logic (non-termination, . . .)

• But by a pair of predicates:

Pre(f) : A → Prop

Post(f) : A× B → Prop

Example of specification

let rec add (x, a) where (bst(a) and avl(a))
returns b where

(bst(b) and avl(b) and
elements (b) === singleton (x) ∪ elements (a)) =

match a with
| Empty ->

Node (Empty, x, Empty)
| Node (l, y, r) ->

if x = y then a
else if x < y then bal (add (x, l), y, r)
else bal (l, y, add (x, r))

end

Proof obligations automatically discharged by Alt-Ergo.

Example of higher-order specification

let rec map (f, a) where
(bst(a) and avl(a)
and ∀ x ∈ elements(a), Pre(f)(x))

returns b where
(bst(b) and avl(b)
and ∀ x ∈ elements(a), ∃ y ∈ b, Post(f)(x,y)
and ∀ y ∈ elements(b), ∃ x ∈ a, Post(f)(x,y))

=
...

The CFML system
(A. Charguéraud)

Most of Caml
(no assertions)

C.F.gen Characteristic
formulas

Interactive proof
in Coq

The characteristic formula [[t]] of a term t is the HO predicate s.t.

∀P ,Q, [[t]] P Q ⇐⇒ {P} t {Q} (in Hoare logic)

(≈ weakest precondition / denotational semantics / deep embedding.)

The characteristic formula [[t]] follows exactly the structure of t
→ lends itself well to interactive proof.

In closing. . .

Pure, strict functional programming is a very short path from a
program to its correctness proof.

Contemporary F.P. languages do not realize this potential.

Axiomatic semantics is not just for imperative languages!

Shall we just embrace and improve proof assistants as P.L.?

Or design F.P.L. with verifiability in mind?

