Understanding Communication and Concurrency
through Types

Kohei Honda (Queen Mary, University of London)
Nobuko Yoshida (Imperial College London)

April 18,2012
Milner Symposium, Edinburgh

In collaboration with:

Matthew Arrott (OOI)
Gary Brown (Red Hat)
David Frankel (SAP)

Stephen Henrie (OOI)
Matthew Rawlings (ISO TC68 WG4/5)
Alexis Richardson (RabbitMQ/VMware)
Steve Ross-Talbot (Cognizant)

and all our academic colleagues, including our team.

Building and Understanding Milner 971

» Computer science is about both understanding and building.
» We understand computing through theories.

» We use that understanding for building.

» The hardware and software environments have started to make

it practical to program with communication.

» Communication is a great basis for programming concurrency

and distribution.

» It is good to have a general, formal basis for software,

especially for communication and concurrency.

Why Communication?

Communication [Hewitt 77, He & Josephs & Hoare 90, Boudol 91, H &
Tokoro 91, Amadio & Castellani & Sangiorgi 96] 1S an economical way

to share data.

Read/Write 1s communication (~ 300 cycles).

Communication is usable over different scales (from intra-chip

to cross-continents).

Communication is expressive: can represent functions, objects,

shared variable concurrency, .. [Milner 73, Hoare 78]

Communication is explicit: it gives us a notion of “behaviour”.

Structuring Sequential Programs

“Our intellectual powers are rather geared to master static
relations. (...) For that reason we should do (as wise
programmers aware of our limitations) our utmost to
shorten the conceptual gap between the static program and

the dynamic process, to make the correspondence between

the program (spread out in text) and the process (spread

out in time) as trivial as possible.” [Dijkstra 1968]

Structured vs Unstructured

Structured: Unstructured:
IF x<=y IF x>y THEN GOTO 2;
BEGIN Z = Y-X;
= - q := SQRT(z);
q : ; GOTO 1;
2! 2:= X~Y;
q:=-SQRT(z);
1: writeln(z,q);
=
q :
END;
WRITELN(z,q);

Why Types?
» Object:

int foobar(String s, int i) { ...
» Function:

Bool -> (Nat -> Nat)

» Benefits:
> clear, robust interface.

> efficient static/dynamic checking.

> gives an effective footing for refined specification and

verification.

... all because of their direct linkage to dynamics of a given

computing paradigm.

Case Study: Ocean Observatories Initiatives

» A NSF project to build a cyberinfrastructure for observing
oceans in US and beyond, with usage span of 30 years.

» Integrate real-time data acquisition, processing and data
storage for ocean research (e.g. sensor arrays, underwater
gliders, ...).

=

e

s

rfrf -
(}

Visible & UV
Radiation
sensible
heat
Wy transfer
' Infrared
Radiation

Internal
Wave _
Radiation

') Jayne Doucette
\ WHOI Graphics

p—

Science

Coastal
SENSOR

NITWORKS

CONTROL ".)) ((f"
NOCES &)

2 Regional SNER, | N S —
BENIOR -) ¥ ; # .
g WP NETWoAxs ‘ 7 Pt General Public

—

CANARIE-
GLORIAD 2,5Gb |

S CANARIE n*10Gb ‘ CANARIE n*1

- NN : ; Montreal ontreal @
_TransLight 10Gb W \ { b Toro\\/-\ Ha

NLR n*10Gb- N \W Taiw vr\!w(* Yt 2.5Gb

GLORIAD 10Gb = —— Boslon

Salt Lake City. — = . S ~ -
— - -~ A ew
Mmcﬁ- Denver — \ \ lanapolic e E‘/ York
4 DCN n*10Gb i ‘ ‘x o Washington DC
\ <] JGN2plus \‘k:\ -y P
Internet2-DCN n*10Gb W\ e . nggg Jeleigh '/' raFlow 10Gb
UltraLight 10-20Gb “hag Ssysieies National >

LambdaRail E NS Tened 10Gb

National LambdaRail n*10Gb \\ -

* Atlanta
n*10Gb LONIn1 ;GObi nteme12 DCIT™™10Gb

Ham210Ghb
WHREN-LILA®Gb El Paso . \ ! Natlonal Lambo.a

e — Jacksonville
\-‘;_. ”’Baton

Rouge
el AtlanticWave 10Gb

AMPATH #
Miami

Ocean Observatories Initiative

Use Case: Command Instrument

OOI ION

Instrument —\-’_\
! Registry

User User Instrument
Agent Authenticator Agent

Note: The pictured instrument
above is SBE49 FastCAT.

#
!
}
|

'
]
)
)
'
)
)
)
LR
'
'
)

°z€F ~"
Protocol Adapter | |

E

Al

d
Messaging Service
Client (Magnet)

AMQP Session
S s S |

AMQP

Application Protocol

AMQP Message Broker

m
:

-
)
)
)
)
)
)
]
'
)
)
)
'
)
)
)
)
)
L)
)
]
'

w
-t%y
Protocol Adapter
E
Al
Messaging Service | AMQP
Client (Magnet)

Protocol

Challenges

» Can we describe protocols in OOI distributed applications

accurately?
» (Can we ground them to programming?

» Can we have a simple and efficient execution framework for

these programs?

» (Can we guarantee their safety?

Session Types

Session types describe application-level protocols as types,

giving static abstraction of dynamic interactions.

Born from the structures commonly found in st-calculus

encodings [Pict] of functions, objects and data types.

Linkage to Linear Logic [Girard 87], sorting [Milner 92, Gay 93],
IO sub-types [Pierce& Sangiorgi 93] and linear types [Kobayashi&
Pierce & Turner 96, Y 96, Berger & H & Y O1].

Statically and dynamically ensures type safety, deadlock

freedom and progress.

Dialogue between Industry and Academia

Binary Session Types [PARLE’94, ESOP’98]

4
Milner, Honda and Yoshida joined W3C WS-CDL (2003)

U
Formalisation of W3C WS-CDL [ESOP’07]

$
Scribble at T4 Technology

4
Multiparty Session Types [POPL’08]

4

@* SCIlbble redlt]at

From: "Robin Milner" <Robin.Milner@cl.cam.ac.uk>
Date: Wed, February 11, 2004 1:02 pm

Steve
Thanks for that. I believe that the pi-calculus team ought to be able
to do something with it -- you seems to be taking it in that direction

already.

Nobuko, Kohei: I thought we ought to try to model use-cases

in pi-calculus, with copious explanations in natural language,

aiming at seeing how various concept like role, transaction,
would be modelled in pi. I'm hoping to try this one when I
get time; you light like to try toom, and see if we agree!

Robin

' 5 v Q
Client (a) = .OTCC)C(}>. ¢ drequest<v) c

¥q tent_1d, id > ;
Gle = ‘(}[OK b, dareserve <chient_ >

Not—ok. s, ; Yaabort
M e S W

- s = Ydrequest2 <.

P@Plc«c@d

S
[2-c |

e % ChéhT(Q) \C-S.‘ A(a):

A
Replaced by

Dialogue between Industry and Academia

Binary Session Types [PARLE’94, ESOP’98]

4
Milner, Honda and Yoshida joined W3C WS-CDL (2003)

U
Formalisation of W3C WS-CDL [ESOP’07]

$
Scribble at T4 Technology

4
Multiparty Session Types [POPL’08]

4

@* SCIlbble redlt]at

Dialogue between Industry and Academia

Binary Session Types [PARLE’94, ESOP’98]

4
Milner, Honda and Yoshida joined W3C WS-CDL (2003)

U
Formalisation of W3C WS-CDL [ESOP’07]

$
Scribble at T4 Technology

4
Multiparty Session Types [POPL’08]

4

OQL (S Scribble # e @ '

Cognizant |

Binary Session Types : Buyer- Seller Protoce |

Seller)

Buyer

; S‘rn‘nj ;2Int) @{OK:!S'trrnji?DMe. send, QUTT :end 3

bran ch

.'S‘rn‘nj ;2Int; @{ok:"Strmg; Date jend, quTt send }

doal ? String ;s T Int) .8{0!(: ?.S'hr.‘nj}! Da'te;end’ quTt . end}

Multiparty Sesston Types
Buyefi, Seller

Multiparty Sesston Types
Buyefi, Seller

Multiparty Session Types

Global Alice — Bob: (Nat).
Types Bob — Carol: (Nat).end

Projection

TBob :?<A1ice, Nat> X
Local Types l{Carol,Nat);end

Type
checking

Multiple Pgopn = s?(Alice,x);
Languages s!(Carol,x);0

ATy, End

Binary session types correspond to two compatible, deterministic CFSMs with |

non-mixed states [Gouda et al 86] —> Multiparty Session Automata [ESOP’12].

Applying theories

» We are contributing to OOI through a protocol description
language, Scribble, and development/execution environments,

all based on the underlying theories without compromise.

» Development/execution environments centre on a tool chain
for protocol validation, endpoint projection, FSM translations,
APIs and runtimes, all directly informed by the theory,

integrated with the OOI CI environments.

» Developers can develop using “legacy” communication

primitives, such as RPC, which are executed as sessions.

Use Case: Command Instrument

OOI ION

Instrument —\-’_\
! Registry

User User Instrument
Agent Authenticator Agent

Note: The pictured instrument
above is SBE49 FastCAT.

Global type

protocol CommandInstrument (role user, role registry,
role agent, role instrument) ({

request(string instrumentId, int priority) from user to registry;
maxCommands (int max) from registry to user;
request(string instrumentId) from user to agent;
choice at agent {

accept() from agent to user;

rec loop {

choice at user {
request(string command) from user to agent;

request(string command) from Agent to Instrument;
response(DataFormat data) from instrument to agent;
response(DataFormat data) from agent to user;
loop;

} or {

quit() from user to agent;

}
p or {

reject(String reason) from agent to user;

Local type

protocol CommandInstrument (role client, role registry,
role agent) at client {

request(string instrumentId) to registry;

maxCommands (int max) from registry;
request(string instrumentId) to agent;
choice at agent {
accept() from agent;
rec loop {
choice at user {
request(string command) to agent;
response(DataFormat data) from agent;
loop;
} or {
quit() to agent;
}
} or {

reject(String reason) to agebt;

def command instrument(self, registry, agent, command):

class ClientApp():

c = Conversation.create(’CommandInstrument’, ‘client’)
c.request(registry, 'registry’)
c.send('registry’, ’'request’, ’'SBE49FastCAT’)
conv_msg = c.receive('registry’)
max = conv_msg.payload
c.request(agent, 'agent’)
conv_msg = c.receive('agent’)
if (conv_msg.operation == ’'accept’):
count = 0
while(count < max):
c.send('agent’, 'request’, command)
conv_msg = c.receive('agent’)
data = conv_msg.payload
and output data..
count = count+l;
elif (conv msg.operation == ’'reject’):

Distribute Application Facility

Service Resource

—
w

Physical Resource

FSM n_svantigusro]

Control Protocol

Control
Protocol

Physial Resource
Control Protocol

Control

Application View

Service Resource

Service Resource
Adapter

Proxy Resource Control

Protocol
Capability
Protocol
Contract
Protocol

Protocol
Monitor
Protocol
Capability
Protocol
Contract
Protocol
Control
Protocol
Monitor
Protocol
Protocol
Contract
Protocol

Monitor

Service Application

mﬂ.
2:

Finite State Machine
Protocol Adapter

FSM in_avent{guard)/

Q out_event
&)

Finite State Machine
Protocol Adapter

Protocol Factory

Protocol Factory

Magnat

Twisted Reactor

Twisted Reactor

[

[

Proxy Resource

Agent

FSM in_eventguard)/

@ out_event
@i e
'

Finite State Machine
Protocol Adapter

Protocol Factory

Finite State Machine
Protocol Adapter

txAMQP
Twisted Reactor

Protocol Factory

l

Twisted Reactor

[

Messaging Service
(AMQP Broker)

Ocean Observatories Initiative

Distributed
Message-Based

System View

g

Conversation Monitor Conversa
State Info Interceptor Specs
{Scribble)
I oo

¢ update > g
SRR e e e e e R e s s b g s s et e action < .
i ookt i b il i s e e :
+ Governance
1
| Interceptor i
; . eng / B mossaoais s L ocioicini G
: [- - :
i (]
: L i
: read ! cision H
: : lout ;
; annotate ! . S Policy Decision PointPDP___ |
i i
1
i "
1 N
; ! Conversation Management
:. annotate ': Service * |
: — ' .
i
i
i
1
i
i

Conformance Mmessages .
e Conversation Log I
Messaging Client

Message Broker

M OcCEAN OBSERVATORY INITIATIVE CREATE ACCOUNT SIGHT

*

7 Dashboard
s CURRENT LOCATION FILTER | RECENT IMAGES
v N
Yy ¢, Glider
L b & last Modified: 2011-06-15
— P i == Last Vlewed: 2011-12-15
B £ el Last Updated: 2011-12-30, 13.24
SEARCH Gorgonian Coral
Last Modified: 2011-06-15
RESOURLCES Last Viewed: 2011-12-15
& All Resources Last Updated: 2011-12-30, 12,24
& Data Products v i
-) Acoustic Release
B Observataries Lisst Motlified: 2011-06-15
i Platforms Last Viewed: 2011-12-15

Instruments Last Updated: 2011-12-30, 13.24

POPULAR RESOURCES

SeaBird COT

Last Modifed: 2001-06-15

Last Wliewsad: 2011-12-15

lLast Updated: 2011-12-30, 13.24

Welcome to Release 2 of the Ocean
Observatories |nitiative Observatory
{200), Yeu already have access to
many 00| features and real-time
data, Just click on something that
looks interesting on this page to start
using the 00! as our Guest.

Marine caption

Last Modified: 2001-06-15

Last Viewed: 2011-12-15

Last Updated: 2011-12-30, 13.24
For personalized services, such as
setting up notifications and presery-
ing settings for your next visit, create
a free account by clicking an "Create
Account” at the top of the page.

Surface Buoy

Last Modified: 2001-06-15

Last Viewed: 2011-12-15

Last Updated: 2011-13-30, 13.24

DATA LEGEND RECENCY RECENT UPDATES
UNUSUAL EVENTS
r O Temperature v 1 Hour ™ ATTE DATE TYFE EVENT DESCRIPTION MOTE
B e
- Salinity) 01 m Cregon Coast North Salimity Type Event Description goes here Note goes here &
L, oo sl = o Oregon Coast Wave Heigh
0 Ceyeen ‘p’ 3 hours 01 m Califormni wth 100m pH Type Event Description goes here Note goes here Last Modified: 2011-06-15
ast Modified: 2011-06-1
4 01 m Califormiz South salinits g O ' zoes har \ zoas her
u'hr.'r'-:'r.r." Science Foundation working Density 5 hours 0O m litormia South salinity Type Ewvent ODescrption goes here Note goes here Lt e D014.19-1%
h Consartium for Ocean Leadership Currents 2 hours O 03m on Morth Turbidity 2012-01-10 Type Ewent Descripton goes here Note goes here e T
a5 ated: 2011-12-30, 13.24
Sea Surface Height (55H) 17 hours O 05 m Oregon SouthTemperature 2012-01-10 Type Event Description goesk Nate goes here P
Chloroptnyll 20'm Cregon Coast Currents 2042-01-10 Type Event Description goes h =
itdid B hourl e - = L Water Surface Elevation
0 Turbidity ‘(24 hours [O @1h California South Seismclagy 2012-02-10 23:55: Type Ewent Description goest Last Modified: 2011-06-15
e A5 so e 11-Ub-1
a pH 48 Hours] . Oregon Coast South 1000m Ox 2012-01-10 23; Last Viewed: 2011-12-15
O Seismology v 72 Hours 02 h Calitornia Coast Seismology ; Description goes here Note goes here ’] = -
- i iE 2 | Last Updated: 2011-12-30, 13.24
0 Other ‘f 0 04 h Califormia North Seismology Type Ewvent Description goes here Note goes here

FACEPAGE RELATED COMPOSITE STATUS

Programming with Conversations and Protocols

Does it help programming? Does it offer developers a good

programming abstraction?

Does it help verification? Does it offer a good basis for

specifications and verifications?

Does it help us run programs efficiently with a simple runtime

machinery?

Ongoing work

Enrichment of session types, often stimulated by practice

(e.g. dependent types).

Behavioural equivalences (e.g. when two global services are

equivalent?).

Specification and verification (e.g. assertions, refinement).

Development and execution frameworks informed by theories
(e.g. Scribble).

Different flavours of MPST-based programming (e.g. OCaml,
Java, Scala, Haskell, Python, C, ...).

Conclusion

“Types are the leaven for computer programming; they make it

digestible.” [Milner 02]
» Communication and concurrency are becoming the norm in
computing.

» To harness their power, we need to understand their nature, and
identify effective principles to build, specify and verify them:

concurrency theories will help as core scientific principles.

» Diverse theories of types for processes can help, thanks to their

catalytic power.

» Robin’s mail in page 14 is reproduced as it was sent to us. In
the last sentence of the mail, he clearly meant to say: “you

might like to try too”.

» The figure in page 7 has been tracked to Dictionary of

Computer and Internet Terms (Barron’s Educational Series).
These programs, in Pascal, use a sign (plus or minus) to

indicate whether x 1s greater than y.

