
Understanding Communication and Concurrency
through Types

Kohei Honda (Queen Mary, University of London)

Nobuko Yoshida (Imperial College London)

April 18, 2012
Milner Symposium, Edinburgh

1

In collaboration with:

Matthew Arrott (OOI)
Gary Brown (Red Hat)
David Frankel (SAP)
Stephen Henrie (OOI)

Matthew Rawlings (ISO TC68 WG4/5)
Alexis Richardson (RabbitMQ/VMware)

Steve Ross-Talbot (Cognizant)

and all our academic colleagues, including our team.

2

Building and Understanding [Milner 97]

➤ Computer science is about both understanding and building.

➤ We understand computing through theories.

➤ We use that understanding for building.

3

Standpoints
➤ The hardware and software environments have started to make

it practical to program with communication.

➤ Communication is a great basis for programming concurrency
and distribution.

➤ It is good to have a general, formal basis for software,
especially for communication and concurrency.

4

Why Communication?
➤ Communication [Hewitt 77, He & Josephs & Hoare 90, Boudol 91, H &

Tokoro 91, Amadio & Castellani & Sangiorgi 96] is an economical way
to share data.

➤ Read/Write is communication (∼ 300 cycles).

➤ Communication is usable over different scales (from intra-chip
to cross-continents).

➤ Communication is expressive: can represent functions, objects,
shared variable concurrency, .. [Milner 73, Hoare 78]

➤ Communication is explicit: it gives us a notion of “behaviour”.

5

Structuring Sequential Programs

“Our intellectual powers are rather geared to master static
relations. (...) For that reason we should do (as wise
programmers aware of our limitations) our utmost to
shorten the conceptual gap between the static program and
the dynamic process, to make the correspondence between
the program (spread out in text) and the process (spread
out in time) as trivial as possible.” [Dijkstra 1968]

6

Structured vs Unstructured

7

Why Types?
➤ Object:

int foobar(String s, int i) { ... }

➤ Function:

Bool -> (Nat -> Nat)

➤ Benefits:
➣ clear, robust interface.
➣ efficient static/dynamic checking.
➣ gives an effective footing for refined specification and

verification.
... all because of their direct linkage to dynamics of a given
computing paradigm.

8

Case Study: Ocean Observatories Initiatives
➤ A NSF project to build a cyberinfrastructure for observing

oceans in US and beyond, with usage span of 30 years.

➤ Integrate real-time data acquisition, processing and data
storage for ocean research (e.g. sensor arrays, underwater
gliders, ...).

9

Use Case: Command Instrument

10

Challenges
➤ Can we describe protocols in OOI distributed applications

accurately?

➤ Can we ground them to programming?

➤ Can we have a simple and efficient execution framework for
these programs?

➤ Can we guarantee their safety?

11

Session Types
➤ Session types describe application-level protocols as types,

giving static abstraction of dynamic interactions.

➤ Born from the structures commonly found in π-calculus
encodings [Pict] of functions, objects and data types.

➤ Linkage to Linear Logic [Girard 87], sorting [Milner 92, Gay 93],
IO sub-types [Pierce& Sangiorgi 93] and linear types [Kobayashi&
Pierce & Turner 96, Y 96, Berger & H & Y 01].

➤ Statically and dynamically ensures type safety, deadlock
freedom and progress.

12

Dialogue between Industry and Academia
Binary Session Types [PARLE’94, ESOP’98]

⇓

Milner, Honda and Yoshida joined W3C WS-CDL (2003)
⇓

Formalisation of W3C WS-CDL [ESOP’07]
⇓

Scribble at Technology
⇓

Multiparty Session Types [POPL’08]
⇓

13

Beginning
From: "Robin Milner" <Robin.Milner@cl.cam.ac.uk>
Date: Wed, February 11, 2004 1:02 pm

Steve

Thanks for that. I believe that the pi-calculus team ought to be able
to do something with it -- you seems to be taking it in that direction
already.

Nobuko, Kohei: I thought we ought to try to model use-cases
in pi-calculus, with copious explanations in natural language,
aiming at seeing how various concept like role, transaction, ..
would be modelled in pi. I’m hoping to try this one when I
get time; you light like to try toom, and see if we agree!

Robin

14

Dialogue between Industry and Academia
Binary Session Types [PARLE’94, ESOP’98]

⇓

Milner, Honda and Yoshida joined W3C WS-CDL (2003)
⇓

Formalisation of W3C WS-CDL [ESOP’07]
⇓

Scribble at Technology
⇓

Multiparty Session Types [POPL’08]
⇓

15

Dialogue between Industry and Academia
Binary Session Types [PARLE’94, ESOP’98]

⇓

Milner, Honda and Yoshida joined W3C WS-CDL (2003)
⇓

Formalisation of W3C WS-CDL [ESOP’07]
⇓

Scribble at Technology
⇓

Multiparty Session Types [POPL’08]
⇓

16

Multiparty Session Types

G
Projection

!!!!
!!
!!
!

"" ##
""

""
""

"
Global
Types

Alice→ Bob : 〈Nat〉.
Bob→ Carol : 〈Nat〉.end

!"#$%&'(TAlice
Type

checking
""

)*+,-./0TBob

""

!"#$%&'(TCarol

""

Local Types
TBob =?〈Alice,Nat〉;

!〈Carol,Nat〉;end

BPEL Java Ocaml Multiple
Languages

PBob = s?(Alice,x);
s!〈Carol,x〉;0

17

Binary session types correspond to two compatible, deterministic CFSMs with

non-mixed states [Gouda et al 86] =⇒Multiparty Session Automata [ESOP’12].

18

Applying theories
➤ We are contributing to OOI through a protocol description

language, Scribble, and development/execution environments,
all based on the underlying theories without compromise.

➤ Development/execution environments centre on a tool chain
for protocol validation, endpoint projection, FSM translations,
APIs and runtimes, all directly informed by the theory,
integrated with the OOI CI environments.

➤ Developers can develop using “legacy” communication
primitives, such as RPC, which are executed as sessions.

19

Use Case: Command Instrument

20

Global type
protocol CommandInstrument (role user, role registry,

role agent, role instrument) {
request(string instrumentId, int priority) from user to registry;
maxCommands(int max) from registry to user;
request(string instrumentId) from user to agent;
choice at agent {

accept() from agent to user;
rec loop {

choice at user {
request(string command) from user to agent;
request(string command) from Agent to Instrument;
response(DataFormat data) from instrument to agent;
response(DataFormat data) from agent to user;
loop;

} or {
quit() from user to agent;

}
} or {

reject(String reason) from agent to user;
}

}

21

Local type
protocol CommandInstrument (role client, role registry,

role agent) at client {
request(string instrumentId) to registry;
maxCommands(int max) from registry;
request(string instrumentId) to agent;
choice at agent {

accept() from agent;
rec loop {

choice at user {
request(string command) to agent;
response(DataFormat data) from agent;
loop;

} or {
quit() to agent;

}
} or {

reject(String reason) to agebt;
}

}

22

Program
class ClientApp():

def command_instrument(self, registry, agent, command):
c = Conversation.create(’CommandInstrument’, ’client’)
c.request(registry, ’registry’)
c.send(’registry’, ’request’, ’SBE49FastCAT’)
conv_msg = c.receive(’registry’)
max = conv_msg.payload
c.request(agent, ’agent’)
conv_msg = c.receive(’agent’)
if (conv_msg.operation == ’accept’):

count = 0
while(count < max):

c.send(’agent’, ’request’, command)
conv_msg = c.receive(’agent’)
data = conv_msg.payload
and output data..
count = count+1;

elif (conv_msg.operation == ’reject’):
....

23

24

Programming with Conversations and Protocols
➤ Does it help programming? Does it offer developers a good

programming abstraction?

➤ Does it help verification? Does it offer a good basis for
specifications and verifications?

➤ Does it help us run programs efficiently with a simple runtime
machinery?

25

Ongoing work
➤ Enrichment of session types, often stimulated by practice

(e.g. dependent types).

➤ Behavioural equivalences (e.g. when two global services are
equivalent?).

➤ Specification and verification (e.g. assertions, refinement).

➤ Development and execution frameworks informed by theories
(e.g. Scribble).

➤ Different flavours of MPST-based programming (e.g. OCaml,
Java, Scala, Haskell, Python, C, ...).

26

Conclusion
“Types are the leaven for computer programming; they make it
digestible.” [Milner 02]

➤ Communication and concurrency are becoming the norm in
computing.

➤ To harness their power, we need to understand their nature, and
identify effective principles to build, specify and verify them:
concurrency theories will help as core scientific principles.

➤ Diverse theories of types for processes can help, thanks to their
catalytic power.

27

Notes
➤ Robin’s mail in page 14 is reproduced as it was sent to us. In

the last sentence of the mail, he clearly meant to say: “you
might like to try too”.

➤ The figure in page 7 has been tracked to Dictionary of
Computer and Internet Terms (Barron’s Educational Series).
These programs, in Pascal, use a sign (plus or minus) to
indicate whether x is greater than y.

28

