
DEFINING A LANGUAGE
Robert Harper

Friday, April 27, 12

ACKNOWLEDGEMENTS

I am honored to have had the privilege of working
with Robin on the development of Standard ML.

It is also a pleasure to thank my collaborators,

Karl Crary, Derek Dreyer, Daniel Lee, Mark Lillibridge,
David MacQueen, John Mitchell, Eugenio Moggi, Greg
Morrisett, Frank Pfenning, Chris Stone, and Mads Tofte.

And many colleagues in the field over the years.

Friday, April 27, 12

STANDARD ML

Robin sought to consolidate disparate work on ML to
formulate a common language to support research on
automated reasoning and functional programming.

The result was the language Standard ML.

The design and implementation of Standard ML set
new standards for the field and led to a wealth of
further developments.

Friday, April 27, 12

BOLD OBJECTIVES

A full-scale language with polymorphism, pattern
matching, exceptions, higher-order functions,
mutable references, abstract types, modules.

A precise definition that would admit analysis, inform
implementation, and ensure portability.

An implementation based on the definition that would
support application to mechanized proof.

Friday, April 27, 12

A PROVOCATIVE
QUESTION

What does it mean for a language to exist?

Just what sort of thing is a language?

When is a language well-defined?

What can we prove about a language?

Robin’s thesis: a language is a formal object amenable
to rigorous analysis.

Friday, April 27, 12

THE ENTERPRISE OF
SEMANTICS

Answering such questions is the province of
semantics, to which Robin’s work was devoted.

Generally speaking, one wishes to give a mathematical
formulation of computational ideas, often using ideas
from logic, algebra, and topology.

But such methods had never been tried at scale, and
there was reason to doubt they would work.

Friday, April 27, 12

AN ELEGANT IDEA

Robin proposed an operational approach that stressed
the symmetries between two aspects of a language:

Statics, which defines when programs are properly
formed.

Dynamics, which defines the execution behavior of
a program.

At the time denotational methods were more popular,
but had more limited scope.

Friday, April 27, 12

NATURAL SEMANTICS

The statics consists of typing judgements

context ⊢ expression ⇒ type

The dynamics consists evaluation judgements

environment ⊢ expression ⇒ value

Both are given by inductive definitions in the form of
inference rules like those used in formal logic.

Friday, April 27, 12

STATIC SEMANTICS

� ` e1) real ! int � ` e2) real

� ` e1(e2)) int

� ` e1) int � ` e2) int
� ` e1 + e2) int

�, x) ⌧ ` x) ⌧

Friday, April 27, 12

STATIC SEMANTICS

Type inference, which is of great practical importance,
is expressed by non-determinism in the rules.

Expressions have many types (are polymorphic).

Just “guess” the appropriate type for a particular
situation:

�, x) int ` x) int
� ` �x.x) int ! int

Friday, April 27, 12

DYNAMIC SEMANTICS

E, x) 17 ` x) 17

E ` e1) 17 E ` e2) 4
E ` e1 + e2) 21

E ` e1) �x.e E ` e2) v2 E, x) v2 ` e) v

E ` e1(e2)) v

Friday, April 27, 12

TYPE SAFETY

A language is well-defined (aka type safe) if the statics
and the dynamics are coherent.

The statics “predicts” the form of value.

The dynamics “realizes” the prediction.

For example, a number should not be given a
function type, nor a function a numeric type.

Friday, April 27, 12

RIGHT AND WRONG

Expressing coherence is trickier than it seems!

What cannot happen, not just what does happen.

Robin’s answer was to introduce answers:

environment ⊢ expression ⇒ answer

An answer is either a value or wrong (a technical
device to express impossibility).

Friday, April 27, 12

WELL-TYPED PROGRAMS
DO NOT GO WRONG

Instrument dynamics with run-time checks:

Safety Theorem: If exp ⇒ typ and exp ⇒ ans, then ans
is not wrong.

Show that answer admits type.

Show that wrong does not admit a type.

E ` e1) “abc”
E ` e1 + e2) wrong

Friday, April 27, 12

PRINCIPAL TYPES

Principal Type Theorem In any given context a well-
typed expression has a most general, or principal, type
of which all others are substitution instances.

Computed using unification (constraint solving).

Corollary Either context ⊢ exp ⇒ typ or not.

Compute principal type (if it has one).

Check that typ is an instance of it.

Friday, April 27, 12

PRINCIPAL TYPES

Consider the function

Constraints:

Solution:

�f.map f [1, 2, 3]

↵ = � ! �

� = �1 ! �2

�1 list = int list

(int ! �) ! �

Friday, April 27, 12

SCALING UP

This methodology works well for functional
programs, but can it scale up?

Computational effects, such as mutable storage
and exceptions.

Modularity and abstraction mechanisms.

Modules posed the most interesting challenges.

(But effects caused trouble too!)

Friday, April 27, 12

MODULES

The most ambitious aspect of Standard ML was the
module system (designed by Dave MacQueen).

Signatures are the types of modules.

Structures are hierarchical modules.

Functors are functions over modules.

The crux is the concept of type sharing, which controls
visibility of types across interfaces.

Friday, April 27, 12

SIGNATURES

signature QUEUE = sig
 type α queue
 val empty : α queue
 val insert : α × α queue → α queue
 val remove : α queue → α × α queue
end

Friday, April 27, 12

STRUCTURES

structure Queue : QUEUE = struct
 type α queue = α list × α list
 val empty = (nil, nil)
 val insert = λ(x,q)....
 val remove = λq....
end

Friday, April 27, 12

REALIZATION

The abstract signature QUEUE instantiates to the
concrete signature QUEUE’ given by

signature QUEUE’ = sig
 type α queue = α list × α list
 val empty : α queue
 val insert : α × α queue → α queue
 val remove : α queue → α × α queue
end

Friday, April 27, 12

MODULES

Remarkably, the definition method scales to modules:

Statics: context ⊢ module ⇒ interface

Dynamics: environment ⊢ module ⇒ structure

Type sharing relationships are “guessed” non-
deterministically.

Generalizes polymorphic inference described
above with type definitions.

Friday, April 27, 12

PRINCIPALITY,
REVISITED

Principal Signature Theorem Every well-formed
module has a most general interface of which all
interfaces are realizations obtained by substitution.

Signature matching is mediated by realization.

(And enrichment, or “width” subtyping.)

Decidability of signature checking follows directly.

Friday, April 27, 12

SUCCESSES AND
FAILURES

The Definition of Standard ML realizes Robin’s vision:

A language is defined by an inductive definition of
its statics and dynamics.

Safety is formulated and proved using wrong
answers.

Principality supports inference and checking.

At least seven compatible compilers exist for SML!

Friday, April 27, 12

SUCCESSES AND
FAILURES

Nevertheless, The Definition has some shortcomings:

Interaction between polymorphism and effects is
problematic (loss of safety and principality).

Dynamics “cheats” to manage exceptions.

Use of wrong seems needlessly indirect.

Fudge for the dynamic effect of enrichment order.

Spurred lots of further research in how to do better.

Friday, April 27, 12

TYPE-THEORETIC
FOUNDATIONS

The type-theoretic foundations for modularity.

MacQueen: dependent types.

Leroy: manifest types, applicative functors.

H+Lillibridge, H+Stone: translucent sums,
singleton kinds

Russo+Dreyer: higher-order polymorphism.

Crucial for code certification and mechanization.

Friday, April 27, 12

TYPE-THEORETIC
FOUNDATIONS

Phase distinction: types are static, values dynamic.

Open-scope abstraction: Queue.queue is abstract in all
contexts

Singleton kinds: τ has kind S(ρ) iff τ is equivalent to ρ.

Generativity: track effects, object identity/ownership

General ! and " signatures.

Friday, April 27, 12

REDEFINING A
LANGUAGE

Statics is now elaboration from an “external language”
to a type-theoretic “internal language”.

context ⊢ expression ⇒ term : type

Dynamics is defined on internal language using
Plotkin’s structural operational semantics.

term [memory] ↦ term’ [memory’]

Friday, April 27, 12

REDEFINING A
LANGUAGE

statics

dynamics

SML

SML TIL TIL
statics dynamics

Friday, April 27, 12

REDEFINING A
LANGUAGE

Safety may be expressed as progress and preservation.

Progress: every well-formed state is either final or
makes a transition.

Preservation: every transition from a well-formed
state is well-formed.

No need for artificial wrong transitions that cannot
occur (and avoids problems with exceptions).

Friday, April 27, 12

CERTIFYING COMPILERS

The type-theoretic framework is crucial to type-based
code certification.

Transform a series of typed internal languages
starting with elaboration through to assembly.

Transfer external language typing properties to
object code.

Example: TILT/TAL compiler for Standard ML.

Friday, April 27, 12

CERTIFYING COMPILERS

The statics is the front-end, elaborating SML into a
clean type theory.

Compiler transformations are type-preserving.

eg, continuation conversion a la Griffin

Object code is Morrisett’s typed assembly language.

type checking ensures safety

Friday, April 27, 12

CERTIFYING COMPILERS

SML TIL1 TIL2
elab phase1

TIL2 TIL3
phase2

...

Friday, April 27, 12

MECHANIZED
METATHEORY

Doing meta-theory at scale is not humanly feasible.

Hundreds of twisty little cases, all alike.

(Except the one that isn’t.)

Mechanization is clearly desirable, but it proved
difficult to use general provers to check safety of The
Definition of Standard ML.

van Inwegen’s early effort to prove safety in HOL

Friday, April 27, 12

MECHANIZED META-
THEORY

The Redefinition of Standard ML is much more
amenable to mechanization.

Type theory instead of “static semantic objects.”

Transitional, rather than relational, dynamics.

Twelf makes formalization and verification easy!

LF encoding of internal language

Relational meta-theory + coverage checking.

Friday, April 27, 12

MECHANIZED META-
THEORY

Safety of The Redefinition of Standard ML has been
fully verified (Crary + D. Lee + H).

Statics and dynamics expressed in LF.

Relational meta-theory verified by Twelf coverage
checking.

About 30,000 lines of Twelf developed using
“extreme programming”.

Friday, April 27, 12

MECHANIZATION USING
TWELF

LF encoding of statics and dynamics:

app_s : of (app M N) B ← of M (arr A B) ← of N A.

app_d : steps (app M N) (app M’ N) ← steps M M’.

Relational meta-theory acts on derivations:

pres : steps M M’ → of M A → of M’ A → type.

prog : of M A → val-or-step M.

Friday, April 27, 12

MECHANIZATION USING
TWELF

State cases of a proof preservation and progress.

- : pres (app_d DM) (app_s SM SN) (app_s SM’ SN)
← pres DM SM SM’.

Twelf checks coverage and termination.

∀ D : steps M M’ ∀ S : of M A ∃ S’ : of M’ A ⊤

Friday, April 27, 12

A HUGE SUCCESS

Robin’s methods inspired much future work in
language design, and will continue to do so:

eg, Haskell, O’Caml, F#, Scala

Precise language definition is not only possible, but
practical and useful.

Compatibility among compilers.

Safety properties, code certification.

Friday, April 27, 12

